revaza commited on
Commit
6a0d521
·
verified ·
1 Parent(s): 704f9ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -24
app.py CHANGED
@@ -25,37 +25,37 @@ asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(
25
  )
26
 
27
 
28
- # def transcribe_audio(audio_file):
29
- # if audio_file:
30
- # # Convert the uploaded audio to mono
31
- # mono_audio = convert_to_mono(audio_file)
32
-
33
- # # Write the mono audio to a temporary file and close it before transcribing
34
- # with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
35
- # temp_file.write(mono_audio.read())
36
- # temp_file_path = temp_file.name
37
-
38
- # # Transcribe the audio using the temporary file path
39
- # res = asr_model.transcribe([temp_file_path])
40
-
41
- # # Clean up the temporary file
42
- # os.remove(temp_file_path)
43
-
44
- # # Return the transcription result
45
- # return res[0][0]
46
  def transcribe_audio(audio_file):
47
  if audio_file:
48
  # Convert the uploaded audio to mono
49
  mono_audio = convert_to_mono(audio_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- # Transcribe the audio using the BytesIO object directly
52
- audio_data = mono_audio.read()
53
 
54
- # Use the audio_data in the format expected by the ASR model
55
- res = asr_model.transcribe([BytesIO(audio_data)])
56
 
57
- # Return the transcription result
58
- return res[0][0]
59
 
60
 
61
  # Create the Gradio interface
 
25
  )
26
 
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  def transcribe_audio(audio_file):
29
  if audio_file:
30
  # Convert the uploaded audio to mono
31
  mono_audio = convert_to_mono(audio_file)
32
+
33
+ # Write the mono audio to a temporary file and close it before transcribing
34
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
35
+ temp_file.write(mono_audio.read())
36
+ temp_file_path = temp_file.name
37
+
38
+ # Transcribe the audio using the temporary file path
39
+ res = asr_model.transcribe([temp_file_path])
40
+
41
+ # Clean up the temporary file
42
+ os.remove(temp_file_path)
43
+
44
+ # Return the transcription result
45
+ return res[0][0]
46
+ # def transcribe_audio(audio_file):
47
+ # if audio_file:
48
+ # # Convert the uploaded audio to mono
49
+ # mono_audio = convert_to_mono(audio_file)
50
 
51
+ # # Transcribe the audio using the BytesIO object directly
52
+ # audio_data = mono_audio.read()
53
 
54
+ # # Use the audio_data in the format expected by the ASR model
55
+ # res = asr_model.transcribe([BytesIO(audio_data)])
56
 
57
+ # # Return the transcription result
58
+ # return res[0][0]
59
 
60
 
61
  # Create the Gradio interface