Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
import spaces | |
from PIL import Image | |
import os | |
from huggingface_hub import hf_hub_download | |
import torch | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import hf_hub_download | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", | |
custom_pipeline="pipeline_flux_rf_inversion", | |
torch_dtype=torch.bfloat16) | |
#pipe.enable_lora() | |
pipe.to("cuda") | |
def get_examples(): | |
case = [ | |
[Image.open("metal.png"),"dragon.png", "a dragon, in 3d melting gold metal",0.9, 0.5, 0, 5, 28, 28, 0, False,False, 2, False, "text/image guided stylzation" ], | |
[Image.open("doll.png"),"anime.png", "anime illustration",0.9, 0.5, 0, 6, 28, 28, 0, False, False, 2, False,"text/image guided stylzation" ], | |
[Image.open("doll.png"), "raccoon.png", "raccoon, made of yarn",0.9, 0.5, 0, 4, 28, 28, 0, False, False, 2, False, "local subject edits" ], | |
[Image.open("cat.jpg"),"parrot.png", "a parrot", 0.9 ,0.5,2, 8,28, 28,0, False , False, 1, False, "local subject edits"], | |
[Image.open("cat.jpg"),"tiger.png", "a tiger", 0.9 ,0.5,0, 4,8, 8,789385745, False , False, 1, True, "local subject edits"], | |
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"], | |
] | |
return case | |
def reset_do_inversion(): | |
return True | |
def resize_img(image, max_size=1024): | |
width, height = image.size | |
scaling_factor = min(max_size / width, max_size / height) | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
return image.resize((new_width, new_height), Image.LANCZOS) | |
def check_style(stylezation, enable_hyper_flux): | |
if stylezation == "text/image guided stylzation": | |
return 0.9, 0.5, 0, 6, 28, 28, False | |
else: | |
if enable_hyper_flux: | |
return 0.9, 0.5, 0, 4, 8, 8, False | |
else: | |
return 0.9, 0.5, 2, 7, 28, 28, False | |
def check_hyper_flux_lora(enable_hyper_flux): | |
if enable_hyper_flux: | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125) | |
pipe.fuse_lora(lora_scale=0.125) | |
return 8, 8, 4 | |
else: | |
pipe.unfuse_lora() | |
return 28, 28, 6 | |
def invert_and_edit(image, | |
prompt, | |
eta, | |
gamma, | |
start_timestep, | |
stop_timestep, | |
num_inversion_steps, | |
num_inference_steps, | |
seed, | |
randomize_seed, | |
eta_decay, | |
decay_power, | |
width = 1024, | |
height = 1024, | |
inverted_latents = None, | |
image_latents = None, | |
latent_image_ids = None, | |
do_inversion = True, | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if do_inversion: | |
inverted_latents, image_latents, latent_image_ids = pipe.invert(image, num_inversion_steps=num_inversion_steps, gamma=gamma) | |
do_inversion = False | |
output = pipe(prompt, | |
inverted_latents = inverted_latents.to(DEVICE), | |
image_latents = image_latents.to(DEVICE), | |
latent_image_ids = latent_image_ids.to(DEVICE), | |
start_timestep = start_timestep/num_inference_steps, | |
stop_timestep = stop_timestep/num_inference_steps, | |
num_inference_steps = num_inference_steps, | |
eta=eta, | |
decay_eta = eta_decay, | |
eta_decay_power = decay_power, | |
).images[0] | |
return output, inverted_latents.cpu(), image_latents.cpu(), latent_image_ids.cpu(), do_inversion, seed | |
# UI CSS | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=css) as demo: | |
inverted_latents = gr.State() | |
image_latents = gr.State() | |
latent_image_ids = gr.State() | |
do_inversion = gr.State(True) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# RF inversion ποΈποΈ | |
### Edit real images with FLUX.1 [dev] | |
following the algorithm proposed in [*Semantic Image Inversion and Editing using | |
Stochastic Rectified Differential Equations* by Rout et al.](https://rf-inversion.github.io/data/rf-inversion.pdf) | |
based on the implementations of [@raven38](https://github.com/raven38) & [@DarkMnDragon](https://github.com/DarkMnDragon) ππ» | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://rf-inversion.github.io/) [[arxiv](https://arxiv.org/pdf/2410.10792)] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
label="Input Image", | |
type="pil" | |
) | |
prompt = gr.Text( | |
label="Edit Prompt", | |
max_lines=1, | |
placeholder="describe the edited output", | |
) | |
with gr.Row(): | |
enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False) | |
stylezation = gr.Radio(["local subject edits", "text/image guided stylzation"], label="edit type", info="") | |
with gr.Row(): | |
start_timestep = gr.Slider( | |
label="start timestep", | |
info = "increase to enhance fidelity, decrease to enhance realism", | |
minimum=0, | |
maximum=28, | |
step=1, | |
value=0, | |
) | |
stop_timestep = gr.Slider( | |
label="stop timestep", | |
info = "increase to enhace fidelity to original image", | |
minimum=0, | |
maximum=28, | |
step=1, | |
value=6, | |
) | |
eta = gr.Slider( | |
label="eta", | |
info = "lower eta to ehnace the edits", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.9, | |
) | |
run_button = gr.Button("Edit", variant="primary") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="num inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
eta_decay = gr.Checkbox(label="eta decay", value=False) | |
decay_power = gr.Slider( | |
label="eta decay power", | |
minimum=0, | |
maximum=5, | |
step=1, | |
value=1, | |
) | |
with gr.Row(): | |
gamma = gr.Slider( | |
label="gamma", | |
info = "increase gamma to enhance realism", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.5, | |
) | |
num_inversion_steps = gr.Slider( | |
label="num inversion steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
run_button.click( | |
fn=invert_and_edit, | |
inputs=[ | |
input_image, | |
prompt, | |
eta, | |
gamma, | |
start_timestep, | |
stop_timestep, | |
num_inversion_steps, | |
num_inference_steps, | |
seed, | |
randomize_seed, | |
eta_decay, | |
decay_power, | |
width, | |
height, | |
inverted_latents, | |
image_latents, | |
latent_image_ids, | |
do_inversion | |
], | |
outputs=[result, inverted_latents, image_latents, latent_image_ids, do_inversion, seed], | |
) | |
gr.Examples( | |
examples=get_examples(), | |
inputs=[input_image,result, prompt,eta,gamma,start_timestep, stop_timestep, num_inversion_steps, num_inference_steps, seed, randomize_seed, eta_decay, decay_power, enable_hyper_flux,stylezation ], | |
outputs=[result], | |
) | |
input_image.change( | |
fn=reset_do_inversion, | |
outputs=[do_inversion] | |
) | |
num_inversion_steps.change( | |
fn=reset_do_inversion, | |
outputs=[do_inversion] | |
) | |
seed.change( | |
fn=reset_do_inversion, | |
outputs=[do_inversion] | |
) | |
stylezation.change( | |
fn=check_style, | |
inputs=[stylezation], | |
outputs=[eta, gamma, start_timestep, stop_timestep, num_inversion_steps, num_inference_steps, eta_decay] | |
) | |
enable_hyper_flux.change( | |
fn=check_hyper_flux_lora, | |
inputs=[enable_hyper_flux], | |
outputs=[num_inversion_steps, num_inference_steps, stop_timestep] | |
) | |
if __name__ == "__main__": | |
demo.launch() |