Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain.vectorstores import FAISS
|
5 |
from langchain.document_loaders import PyPDFLoader
|
6 |
from langchain.chains.question_answering import load_qa_chain
|
7 |
from langchain.llms import HuggingFaceHub
|
|
|
8 |
|
9 |
# Function to load and process the document (PDF)
|
10 |
def load_document(file):
|
@@ -12,16 +12,32 @@ def load_document(file):
|
|
12 |
documents = loader.load()
|
13 |
return documents
|
14 |
|
15 |
-
# Function to embed
|
16 |
def embed_documents(documents):
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return vector_store
|
20 |
|
21 |
-
# Function to handle
|
22 |
def chat_with_document(query, vector_store):
|
23 |
retriever = vector_store.as_retriever()
|
24 |
-
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":0.2})
|
25 |
chain = load_qa_chain(llm, chain_type="stuff")
|
26 |
results = retriever.get_relevant_documents(query)
|
27 |
answer = chain.run(input_documents=results, question=query)
|
@@ -61,7 +77,7 @@ def chatbot_interface():
|
|
61 |
with gr.Row():
|
62 |
question.render()
|
63 |
answer.render()
|
64 |
-
|
65 |
# Launch the Gradio app
|
66 |
demo.launch()
|
67 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel, pipeline
|
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.chains.question_answering import load_qa_chain
|
6 |
from langchain.llms import HuggingFaceHub
|
7 |
+
import torch
|
8 |
|
9 |
# Function to load and process the document (PDF)
|
10 |
def load_document(file):
|
|
|
12 |
documents = loader.load()
|
13 |
return documents
|
14 |
|
15 |
+
# Function to embed documents using Hugging Face model directly
|
16 |
def embed_documents(documents):
|
17 |
+
# Load tokenizer and model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
19 |
+
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
20 |
+
|
21 |
+
# Get document texts
|
22 |
+
document_texts = [doc.page_content for doc in documents]
|
23 |
+
|
24 |
+
# Create embeddings for each document
|
25 |
+
embeddings = []
|
26 |
+
for text in document_texts:
|
27 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
28 |
+
with torch.no_grad():
|
29 |
+
model_output = model(**inputs)
|
30 |
+
embedding = model_output.last_hidden_state.mean(dim=1) # Mean pool the embeddings
|
31 |
+
embeddings.append(embedding.squeeze().numpy())
|
32 |
+
|
33 |
+
# Store embeddings in FAISS vector store
|
34 |
+
vector_store = FAISS.from_embeddings(embeddings, documents)
|
35 |
return vector_store
|
36 |
|
37 |
+
# Function to handle chatbot queries
|
38 |
def chat_with_document(query, vector_store):
|
39 |
retriever = vector_store.as_retriever()
|
40 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature": 0.2})
|
41 |
chain = load_qa_chain(llm, chain_type="stuff")
|
42 |
results = retriever.get_relevant_documents(query)
|
43 |
answer = chain.run(input_documents=results, question=query)
|
|
|
77 |
with gr.Row():
|
78 |
question.render()
|
79 |
answer.render()
|
80 |
+
|
81 |
# Launch the Gradio app
|
82 |
demo.launch()
|
83 |
|