Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- README.md +4 -8
- app.py +69 -0
- config.json +24 -0
- cupid_match_model_best.pkl +3 -0
- model.safetensors +3 -0
- requirements.txt +6 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Cupid
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: mit
|
11 |
-
short_description: An attempt to deploy a lighter version on what i did
|
12 |
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Cupid AI Streamlit
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: "1.30.0"
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
7 |
+
|
8 |
+
# Load models
|
9 |
+
@st.cache_resource
|
10 |
+
def load_models():
|
11 |
+
match_model = joblib.load("cupid_match_model_best.pkl")
|
12 |
+
sentiment_model = DistilBertForSequenceClassification.from_pretrained("sentiment_model")
|
13 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("sentiment_model")
|
14 |
+
return match_model, sentiment_model, tokenizer
|
15 |
+
|
16 |
+
match_model, sentiment_model, tokenizer = load_models()
|
17 |
+
|
18 |
+
st.title("Cupid AI π")
|
19 |
+
st.write("Enter your profile to find match compatibility and sentiment analysis.")
|
20 |
+
|
21 |
+
# User input form
|
22 |
+
with st.form("profile_form"):
|
23 |
+
age = st.number_input("Age", min_value=18, max_value=100, value=25)
|
24 |
+
gender = st.selectbox("Gender", ["male", "female"])
|
25 |
+
orientation = st.selectbox("Orientation", ["single", "open", "complicated"])
|
26 |
+
traits = st.multiselect("Select Your Traits", ["romantic", "adventurous", "funny", "outgoing", "creative", "intellectual"])
|
27 |
+
essay = st.text_area("Tell us about yourself")
|
28 |
+
submitted = st.form_submit_button("Find Matches")
|
29 |
+
|
30 |
+
# Feature prep
|
31 |
+
def prepare_input_for_model(user_traits, age, gender):
|
32 |
+
gender_val = 0 if gender.lower() == "male" else 1
|
33 |
+
all_traits = ["romantic", "adventurous", "funny", "outgoing", "creative", "intellectual"]
|
34 |
+
trait_vec = [1 if trait in user_traits else 0 for trait in all_traits]
|
35 |
+
vec = trait_vec + [age, gender_val]
|
36 |
+
if len(vec) < 6:
|
37 |
+
vec.extend([0] * (6 - len(vec)))
|
38 |
+
elif len(vec) > 6:
|
39 |
+
vec = vec[:6]
|
40 |
+
return vec
|
41 |
+
|
42 |
+
def predict_sentiment(text):
|
43 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
44 |
+
with torch.no_grad():
|
45 |
+
logits = sentiment_model(**inputs).logits
|
46 |
+
pred = torch.argmax(logits, dim=1).item()
|
47 |
+
emoji = "π" if pred == 1 else "π"
|
48 |
+
confidence = torch.softmax(logits, dim=1).max().item()
|
49 |
+
return emoji, round(confidence * 100, 2)
|
50 |
+
|
51 |
+
if submitted:
|
52 |
+
features = prepare_input_for_model(traits, age, gender)
|
53 |
+
sentiment, conf = predict_sentiment(essay)
|
54 |
+
st.success(f"Sentiment: {sentiment} (Confidence: {conf}%)")
|
55 |
+
|
56 |
+
st.write("### Compatibility Score")
|
57 |
+
st.write(f"Input vector: {features}")
|
58 |
+
st.write("Using cosine similarity to calculate match score...")
|
59 |
+
|
60 |
+
# For demo, compare to a few mock profiles
|
61 |
+
mock_profiles = {
|
62 |
+
"Alex": prepare_input_for_model(["romantic", "adventurous"], 30, "male"),
|
63 |
+
"Sophia": prepare_input_for_model(["optimistic", "outdoorsy"], 27, "female"),
|
64 |
+
"Olivia": prepare_input_for_model(["empathetic", "creative"], 29, "female")
|
65 |
+
}
|
66 |
+
|
67 |
+
for name, vec in mock_profiles.items():
|
68 |
+
score = cosine_similarity([features], [vec])[0][0]
|
69 |
+
st.write(f"{name}: {round(score * 100, 2)}% match π")
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"max_position_embeddings": 512,
|
12 |
+
"model_type": "distilbert",
|
13 |
+
"n_heads": 12,
|
14 |
+
"n_layers": 6,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"problem_type": "single_label_classification",
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.50.3",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
cupid_match_model_best.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:121111d8acdd3cb31ac606e941e70e00b1741432436524b53eef4d61126cbae2
|
3 |
+
size 26107
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40aeb76eac3aa33d233d25ac285e098a34dc0bd9d0a55d4ea57f999b15bafcfd
|
3 |
+
size 267832560
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
scikit-learn
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
joblib
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|