Spaces:
Runtime error
Runtime error
Initial commit for hoax detector
Browse files- app.py +72 -0
- ensemble_model.pkl +3 -0
- requirements.txt +5 -0
- vectorizer.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
from transformers import pipeline
|
4 |
+
import re
|
5 |
+
import unicodedata
|
6 |
+
|
7 |
+
# Load pipelines
|
8 |
+
qa_pipeline = pipeline("question-answering", model="Rifky/Indobert-QA", tokenizer="Rifky/Indobert-QA")
|
9 |
+
ner_pipeline = pipeline("ner", model="cahya/bert-base-indonesian-NER", tokenizer="cahya/bert-base-indonesian-NER", grouped_entities=True)
|
10 |
+
|
11 |
+
# Load model hoax
|
12 |
+
with open("ensemble_model.pkl", "rb") as f:
|
13 |
+
model = pickle.load(f)
|
14 |
+
|
15 |
+
with open("vectorizer.pkl", "rb") as f:
|
16 |
+
vectorizer = pickle.load(f)
|
17 |
+
|
18 |
+
def clean_text(text):
|
19 |
+
text = re.sub(r'[\n\r]+', ' ', text)
|
20 |
+
text = re.sub(r'\s{2,}', ' ', text)
|
21 |
+
text = text.strip()
|
22 |
+
text = unicodedata.normalize('NFKC', text)
|
23 |
+
text = text.lower()
|
24 |
+
text = re.sub(r'https?://\S+|www\.\S+', ' url ', text)
|
25 |
+
asian_char_pattern = re.compile(
|
26 |
+
r'[\u4e00-\u9FFF\u30A0-\u30FF\u3040-\u309F\uAC00-\uD7AF\u1100-\u11FF\u3130-\u318F]'
|
27 |
+
)
|
28 |
+
text = asian_char_pattern.sub(' ', text)
|
29 |
+
unwanted_scripts_pattern = re.compile(
|
30 |
+
r'[\u2D30-\u2D7F\uA980-\uA9DF\u1E00-\u1EFF\u0250-\u02AF\u1D00-\u1D7F]'
|
31 |
+
)
|
32 |
+
text = ' '.join(word for word in text.split() if not unwanted_scripts_pattern.search(word))
|
33 |
+
text = re.sub(r'[^a-z0-9\s.,!?;:\'\"()-]', ' ', text)
|
34 |
+
return re.sub(r'\s{2,}', ' ', text).strip()
|
35 |
+
|
36 |
+
# === Fungsi Utama ===
|
37 |
+
def detect_hoax(text):
|
38 |
+
cleaned = clean_text(text)
|
39 |
+
tfidf = vectorizer.transform([cleaned])
|
40 |
+
prediction = model.predict(tfidf)[0]
|
41 |
+
return "Hoaks" if prediction == 1 else "Bukan Hoaks"
|
42 |
+
|
43 |
+
def run_qa(context, question):
|
44 |
+
if not context or not question:
|
45 |
+
return "Masukkan context dan pertanyaan."
|
46 |
+
result = qa_pipeline(question=question, context=context)
|
47 |
+
return result["answer"]
|
48 |
+
|
49 |
+
def run_ner(text):
|
50 |
+
if not text:
|
51 |
+
return []
|
52 |
+
result = ner_pipeline(text)
|
53 |
+
return [(ent["word"], ent["entity_group"]) for ent in result]
|
54 |
+
|
55 |
+
# === Gradio UI ===
|
56 |
+
hoax_tab = gr.Interface(fn=detect_hoax, inputs="text", outputs="text", title="Deteksi Hoaks")
|
57 |
+
|
58 |
+
qa_tab = gr.Interface(
|
59 |
+
fn=run_qa,
|
60 |
+
inputs=[gr.Textbox(label="Context"), gr.Textbox(label="Pertanyaan")],
|
61 |
+
outputs="text",
|
62 |
+
title="Question Answering"
|
63 |
+
)
|
64 |
+
|
65 |
+
ner_tab = gr.Interface(
|
66 |
+
fn=run_ner,
|
67 |
+
inputs="text",
|
68 |
+
outputs=gr.HighlightedText(label="Hasil NER", combine_adjacent=True),
|
69 |
+
title="Named Entity Recognition"
|
70 |
+
)
|
71 |
+
|
72 |
+
gr.TabbedInterface([hoax_tab, qa_tab, ner_tab], ["Deteksi Hoaks", "QA", "NER"]).launch()
|
ensemble_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:354288cdacff965e08c0de8dff13282f64f5c546b30d709d00611ca10e7d2d39
|
3 |
+
size 599691306
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
scikit-learn
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
regex
|
vectorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cede0d09e18bc5cfb31d36f2b38fe1635f20bb48fcfc34f1c01fe0bea9183c3f
|
3 |
+
size 3180887
|