Spaces:
Sleeping
Sleeping
File size: 1,065 Bytes
3b6f551 587269e 3b6f551 587269e 3b6f551 587269e 3b6f551 587269e 3b6f551 587269e 3b6f551 587269e 3b6f551 587269e 3b6f551 587269e 3b6f551 cfabb85 3b6f551 cfabb85 3b6f551 587269e cfabb85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
model = tf.keras.models.load_model('meu_modelo.h5')
def predict_image(img):
img = np.array(img)
img = tf.image.resize(img, (224, 224))
# MobileNetV2:
img = img / 127.5 - 1
img = np.expand_dims(img, axis=0)
prediction = model.predict(img)
if prediction < 0.5:
result = {"ai": float(1 - prediction[0][0]), "human": float(prediction[0][0])}
else:
result = {"human": float(prediction[0][0]), "ai": float(1 - prediction[0][0])}
return result
exemplos = [
'vangoghai.jpg',
'vangoghhuman.jpg'
]
#gradio
image_input = gr.Image()
label_output = gr.Label()
# Gradio Interface
interface = gr.Interface(
fn=predict_image,
inputs=image_input,
outputs=label_output,
examples=exemplos,
title="Image-Classifier-AIvsHuman",
description="Upload an image and the output will tell you whether it's potentially AI-generated or human-generated."
)
interface.launch(debug=True)
|