Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
import random | |
import os | |
from huggingface_hub import snapshot_download | |
snapshot_download(repo_id="APRIL-AIGC/UltraWan", repo_type="model", local_dir="ultrawan_weights/UltraWan", resume_download=True) | |
import subprocess | |
import os | |
import uuid | |
import subprocess | |
def upscale_to_4k(input_video_path, output_video_path): | |
# Use Lanczos for better quality upscale | |
cmd = [ | |
"ffmpeg", | |
"-i", input_video_path, | |
"-vf", "scale=3840:2160:flags=lanczos", # upscale to 4K (3840x2160) | |
"-c:v", "libx264", # or libx265 for smaller size | |
"-crf", "18", # quality: lower is better (range 0-51) | |
"-preset", "slow", # better compression | |
"-y", # overwrite output file | |
output_video_path, | |
] | |
subprocess.run(cmd, check=True) | |
# LIGHT WEIGHT 1.3b | |
# MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
# LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
# LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors" | |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers" | |
LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
LORA_FILENAME = "Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank256_bf16.safetensors" | |
#LORA_FILENAME = "Pusa/Wan21_PusaV1_LoRA_14B_rank512_bf16.safetensors" | |
# LORA_REPO_ID = "RaphaelLiu/PusaV1" | |
# LORA_FILENAME="pusa_v1.safetensors" | |
#LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
#LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanPipeline.from_pretrained( | |
MODEL_ID, vae=vae, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) | |
pipe.fuse_lora() | |
# MOD_VALUE = 32 | |
# DEFAULT_H_SLIDER_VALUE = 512 | |
# DEFAULT_W_SLIDER_VALUE = 896 | |
# # Environment variable check | |
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True" | |
# # Original limits | |
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280 | |
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280 | |
# ORIGINAL_MAX_DURATION = round(81/24, 1) # MAX_FRAMES_MODEL/FIXED_FPS | |
# # Limited space constants | |
# LIMITED_MAX_RESOLUTION = 640 | |
# LIMITED_MAX_DURATION = 2.0 | |
# LIMITED_MAX_STEPS = 4 | |
# # Set limits based on environment variable | |
# if IS_ORIGINAL_SPACE: | |
# SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION | |
# SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION | |
# MAX_DURATION = LIMITED_MAX_DURATION | |
# MAX_STEPS = LIMITED_MAX_STEPS | |
# else: | |
# SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H | |
# SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W | |
# MAX_DURATION = ORIGINAL_MAX_DURATION | |
# MAX_STEPS = 8 | |
# MAX_SEED = np.iinfo(np.int32).max | |
# FIXED_FPS = 24 | |
# FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick" | |
# MIN_FRAMES_MODEL = 8 | |
# MAX_FRAMES_MODEL = 81 | |
#New math to make it High Res | |
MOD_VALUE = 32 | |
# Defaults for higher-res generation | |
DEFAULT_H_SLIDER_VALUE = 768 | |
DEFAULT_W_SLIDER_VALUE = 1344 # 16:9 friendly and divisible by MOD_VALUE | |
# Original Space = Hugging Face space with compute limits | |
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True" | |
# Conservative limits for low-end environments | |
LIMITED_MAX_RESOLUTION = 640 | |
LIMITED_MAX_DURATION = 2.0 | |
LIMITED_MAX_STEPS = 4 | |
# Generous limits for local or Pro spaces | |
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536 | |
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536 | |
ORIGINAL_MAX_DURATION = round(81 / 24, 1) # 3.4 seconds | |
ORIGINAL_MAX_STEPS = 8 | |
# Use limited or original (generous) settings | |
if IS_ORIGINAL_SPACE: | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION | |
MAX_DURATION = LIMITED_MAX_DURATION | |
MAX_STEPS = LIMITED_MAX_STEPS | |
else: | |
SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H | |
SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W | |
MAX_DURATION = ORIGINAL_MAX_DURATION | |
MAX_STEPS = ORIGINAL_MAX_STEPS | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
FIXED_OUTPUT_FPS = 18 # reduce final video FPS to save space | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 81 | |
default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video" | |
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" | |
import os | |
import tempfile | |
import random | |
import numpy as np | |
import torch | |
import gradio as gr | |
import subprocess | |
import shutil | |
def upscale_to_4k_and_replace(input_video_path): | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled: | |
upscaled_path = tmp_upscaled.name | |
cmd = [ | |
"ffmpeg", | |
"-i", input_video_path, | |
"-vf", "scale=3840:2160:flags=lanczos", | |
"-c:v", "libx264", | |
"-crf", "18", | |
"-preset", "slow", | |
"-y", | |
upscaled_path, | |
] | |
subprocess.run(cmd, check=True) | |
shutil.move(upscaled_path, input_video_path) | |
def load_model_from_path(model_path: str): | |
""" | |
Loads a diffusion pipeline from a local directory. | |
The model is automatically loaded to CUDA with float16. | |
""" | |
pipe = DiffusionPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16, | |
variant="fp16" if os.path.exists(os.path.join(model_path, "model.fp16.safetensors")) else None | |
).to("cuda") | |
pipe.enable_model_cpu_offload() # Optional: for large models | |
return pipe | |
def get_duration(prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
progress): | |
if steps > 4 and duration_seconds > 2: | |
return 90 | |
elif steps > 4 or duration_seconds > 2: | |
return 75 | |
else: | |
return 60 | |
def generate_video(prompt, height, width, | |
negative_prompt=default_negative_prompt, | |
duration_seconds=2, guidance_scale=1, | |
steps=4, seed=42, randomize_seed=False, | |
progress=gr.Progress(track_tqdm=True)): | |
if not prompt or prompt.strip() == "": | |
raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.") | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
# Clamp values in demo mode | |
if IS_ORIGINAL_SPACE: | |
height = min(height, LIMITED_MAX_RESOLUTION) | |
width = min(width, LIMITED_MAX_RESOLUTION) | |
duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION) | |
steps = min(steps, LIMITED_MAX_STEPS) | |
# Ensure dimensions are aligned | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
generator_pipe = pipe | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
with torch.inference_mode(): | |
output_frames_list = generator_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
# Save video to temporary file | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS) | |
# Always upscale to 4K | |
upscale_to_4k_and_replace(video_path) | |
return video_path, current_seed | |
with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo: | |
gr.HTML('<meta name="viewport" content="width=device-width, initial-scale=1">') | |
# ... your other components here ... | |
gr.Markdown("# ⚡ InstaVideo") | |
gr.Markdown("This Gradio space is a fork of [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).") | |
# Add notice for limited spaces | |
if IS_ORIGINAL_SPACE: | |
gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
with gr.Row(): | |
height_input = gr.Slider( | |
minimum=SLIDER_MIN_H, | |
maximum=SLIDER_MAX_H, | |
step=MOD_VALUE, | |
value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), | |
label=f"Output Height (multiple of {MOD_VALUE})" | |
) | |
width_input = gr.Slider( | |
minimum=SLIDER_MIN_W, | |
maximum=SLIDER_MAX_W, | |
step=MOD_VALUE, | |
value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), | |
label=f"Output Width (multiple of {MOD_VALUE})" | |
) | |
duration_seconds_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), | |
maximum=MAX_DURATION, | |
step=0.1, | |
value=2, | |
label="Duration (seconds)", | |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") | |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False) | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
ui_inputs = [ | |
prompt_input, height_input, width_input, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
# Adjust examples based on space limits | |
example_configs = [ | |
["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512], | |
["a serene ocean wave crashing on a sandy beach at sunset", 448, 832], | |
["a field of flowers swaying in the wind, spring morning light", 512, 896], | |
] | |
if IS_ORIGINAL_SPACE: | |
# Limit example resolutions for limited spaces | |
example_configs = [ | |
[example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)] | |
for example in example_configs | |
] | |
gr.Examples( | |
examples=example_configs, | |
inputs=[prompt_input, height_input, width_input], | |
outputs=[video_output, seed_input], | |
fn=generate_video, | |
cache_examples="lazy" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |