Spaces:
Sleeping
Sleeping
romnatall
commited on
Commit
·
e633090
1
Parent(s):
f82d1d4
разделил данные по папкам
Browse files- app.py +2 -2
- catboost.ipynb +309 -0
- README.md → data/README.md +0 -0
- data/X.npy +3 -0
- data.csv → data/data.csv +0 -0
- embeddings.npy → data/embeddings.npy +0 -0
- data/logreg.pkl +3 -0
- data/model.cbm +0 -0
- movies_data.csv → data/movies_data.csv +0 -0
- requirements.txt → data/requirements.txt +0 -0
- data/y.npy +3 -0
- search.ipynb +362 -0
app.py
CHANGED
@@ -8,14 +8,14 @@ from transformers import AutoTokenizer, AutoModel
|
|
8 |
import numpy as np
|
9 |
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
|
11 |
-
movies = pd.read_csv('data.csv')
|
12 |
|
13 |
toggle_state = st.sidebar.checkbox("режим разметки")
|
14 |
input_search = st.text_input('Search')
|
15 |
|
16 |
|
17 |
|
18 |
-
data = np.load('embeddings.npy')
|
19 |
|
20 |
|
21 |
|
|
|
8 |
import numpy as np
|
9 |
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
|
11 |
+
movies = pd.read_csv('data/data.csv')
|
12 |
|
13 |
toggle_state = st.sidebar.checkbox("режим разметки")
|
14 |
input_search = st.text_input('Search')
|
15 |
|
16 |
|
17 |
|
18 |
+
data = np.load('data/embeddings.npy')
|
19 |
|
20 |
|
21 |
|
catboost.ipynb
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Результат:\n",
|
13 |
+
"[[1 2 3 7 8]\n",
|
14 |
+
" [4 5 6 7 8]]\n"
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"source": [
|
19 |
+
"import numpy as np\n",
|
20 |
+
"\n",
|
21 |
+
"# Создаем матрицу (2D массив)\n",
|
22 |
+
"matrix = np.array([[1, 2, 3],\n",
|
23 |
+
" [4, 5, 6]])\n",
|
24 |
+
"\n",
|
25 |
+
"# Создаем вектор (1D массив)\n",
|
26 |
+
"vector = np.array([7, 8])\n",
|
27 |
+
"\n",
|
28 |
+
"# Сконкатенируем каждый вектор матрицы с вектором\n",
|
29 |
+
"result = np.column_stack((matrix, np.tile(vector, (matrix.shape[0], 1))))\n",
|
30 |
+
"\n",
|
31 |
+
"print(\"Результат:\")\n",
|
32 |
+
"print(result)\n"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 63,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"data": {
|
42 |
+
"text/plain": [
|
43 |
+
"137"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"execution_count": 63,
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "execute_result"
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": []
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 93,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"X = np.load('X.npy')\n",
|
60 |
+
"Y = np.load('y.npy')\n",
|
61 |
+
"X=X[-2:]\n",
|
62 |
+
"Y=Y[-2:]\n",
|
63 |
+
"np.save('X',X)\n",
|
64 |
+
"np.save('y',Y)"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 104,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [
|
72 |
+
{
|
73 |
+
"data": {
|
74 |
+
"text/plain": [
|
75 |
+
"(29263, 624)"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
"execution_count": 104,
|
79 |
+
"metadata": {},
|
80 |
+
"output_type": "execute_result"
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"source": [
|
84 |
+
"data.shape"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 106,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [
|
92 |
+
{
|
93 |
+
"data": {
|
94 |
+
"text/plain": [
|
95 |
+
"(29265, 624)"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
"execution_count": 106,
|
99 |
+
"metadata": {},
|
100 |
+
"output_type": "execute_result"
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"source": [
|
104 |
+
".shape"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 109,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/plain": [
|
115 |
+
"(29265,)"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"execution_count": 109,
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "execute_result"
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"source": [
|
124 |
+
"Y.shape"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 4,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"\n",
|
134 |
+
"from sklearn.linear_model import LinearRegression\n",
|
135 |
+
"\n",
|
136 |
+
"dat = np.load('embeddings.npy')\n",
|
137 |
+
"data =np.column_stack((dat, dat))\n",
|
138 |
+
"datay = np.ones((data.shape[0]))*5\n",
|
139 |
+
"\n",
|
140 |
+
"data1 = np.column_stack((dat[1:], dat[:-1]))\n",
|
141 |
+
"datay1 = np.ones((data1.shape[0]))\n",
|
142 |
+
"\n",
|
143 |
+
"\n",
|
144 |
+
"X = np.load('X.npy') \n",
|
145 |
+
"Y = np.load('y.npy')\n",
|
146 |
+
"\n",
|
147 |
+
"\n",
|
148 |
+
"\n",
|
149 |
+
"X=np.concatenate((data,X))\n",
|
150 |
+
"Y=np.concatenate((datay,Y))\n",
|
151 |
+
"X = np.concatenate((data1,X))\n",
|
152 |
+
"Y = np.concatenate((datay1,Y))"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 132,
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [
|
160 |
+
{
|
161 |
+
"data": {
|
162 |
+
"text/plain": [
|
163 |
+
"(29263, 624)"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"execution_count": 132,
|
167 |
+
"metadata": {},
|
168 |
+
"output_type": "execute_result"
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"source": [
|
172 |
+
"data.shape"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 5,
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [
|
180 |
+
{
|
181 |
+
"data": {
|
182 |
+
"text/plain": [
|
183 |
+
"4.5227014967230694e-05"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
"execution_count": 5,
|
187 |
+
"metadata": {},
|
188 |
+
"output_type": "execute_result"
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"source": [
|
192 |
+
"\n",
|
193 |
+
"logreg = LinearRegression()\n",
|
194 |
+
"logreg.fit(X, Y)\n",
|
195 |
+
"\n",
|
196 |
+
"import pickle\n",
|
197 |
+
"with open('logreg.pkl', 'wb') as f:\n",
|
198 |
+
" pickle.dump(logreg, f)\n",
|
199 |
+
"\n",
|
200 |
+
"logreg.score(X, Y)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 6,
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [
|
208 |
+
{
|
209 |
+
"name": "stdout",
|
210 |
+
"output_type": "stream",
|
211 |
+
"text": [
|
212 |
+
"0:\ttest: 0.9786223\tbest: 0.9786223 (0)\ttotal: 51.1s\tremaining: 7m 39s\n",
|
213 |
+
"1:\ttest: 0.9950170\tbest: 0.9950170 (1)\ttotal: 1m 13s\tremaining: 4m 54s\n",
|
214 |
+
"2:\ttest: 0.9966407\tbest: 0.9966407 (2)\ttotal: 1m 35s\tremaining: 3m 42s\n",
|
215 |
+
"3:\ttest: 0.9982912\tbest: 0.9982912 (3)\ttotal: 1m 56s\tremaining: 2m 55s\n",
|
216 |
+
"4:\ttest: 0.9988039\tbest: 0.9988039 (4)\ttotal: 2m 18s\tremaining: 2m 18s\n",
|
217 |
+
"5:\ttest: 0.9992459\tbest: 0.9992459 (5)\ttotal: 2m 39s\tremaining: 1m 46s\n",
|
218 |
+
"6:\ttest: 0.9997030\tbest: 0.9997030 (6)\ttotal: 3m 1s\tremaining: 1m 17s\n",
|
219 |
+
"7:\ttest: 0.9998173\tbest: 0.9998173 (7)\ttotal: 3m 22s\tremaining: 50.7s\n",
|
220 |
+
"8:\ttest: 0.9998216\tbest: 0.9998216 (8)\ttotal: 3m 44s\tremaining: 24.9s\n",
|
221 |
+
"9:\ttest: 0.9998608\tbest: 0.9998608 (9)\ttotal: 4m 5s\tremaining: 0us\n",
|
222 |
+
"\n",
|
223 |
+
"bestTest = 0.9998607928\n",
|
224 |
+
"bestIteration = 9\n",
|
225 |
+
"\n"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"ename": "",
|
230 |
+
"evalue": "",
|
231 |
+
"output_type": "error",
|
232 |
+
"traceback": [
|
233 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
234 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
235 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
236 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
237 |
+
]
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"source": [
|
241 |
+
"from catboost import CatBoostRanker,Pool\n",
|
242 |
+
"from sklearn.model_selection import train_test_split\n",
|
243 |
+
"\n",
|
244 |
+
"X, X_test, Y, Y_test = train_test_split(X, Y, test_size=0.1, random_state=42)\n",
|
245 |
+
"classes_test = np.ones(len(Y_test)).astype(int)\n",
|
246 |
+
"test_pool = Pool(data=X_test, label=Y_test, group_id=classes_test)\n",
|
247 |
+
"\n",
|
248 |
+
"\n",
|
249 |
+
"classes_train = np.ones(len(Y)).astype(int)\n",
|
250 |
+
"train_pool = Pool(data=X, label=Y, group_id=classes_train,)\n",
|
251 |
+
"\n",
|
252 |
+
"\n",
|
253 |
+
"cb = CatBoostRanker(iterations=10,)\n",
|
254 |
+
"cb.fit(train_pool,eval_set=test_pool)\n",
|
255 |
+
"cb.save_model('model.cbm')\n"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": 1,
|
261 |
+
"metadata": {},
|
262 |
+
"outputs": [
|
263 |
+
{
|
264 |
+
"name": "stdout",
|
265 |
+
"output_type": "stream",
|
266 |
+
"text": [
|
267 |
+
"[[0.82140051]\n",
|
268 |
+
" [0.91314228]\n",
|
269 |
+
" [0.92991252]]\n"
|
270 |
+
]
|
271 |
+
}
|
272 |
+
],
|
273 |
+
"source": [
|
274 |
+
"import numpy as np\n",
|
275 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
276 |
+
"\n",
|
277 |
+
"# Пример данных\n",
|
278 |
+
"matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
|
279 |
+
"vector = np.array([0.5, 0.7, 0.3])\n",
|
280 |
+
"\n",
|
281 |
+
"# Вычисление косинусного сходства между матрицей и вектором\n",
|
282 |
+
"similarity = cosine_similarity(matrix, vector.reshape(1, -1))\n",
|
283 |
+
"\n",
|
284 |
+
"print(similarity)\n"
|
285 |
+
]
|
286 |
+
}
|
287 |
+
],
|
288 |
+
"metadata": {
|
289 |
+
"kernelspec": {
|
290 |
+
"display_name": "cv",
|
291 |
+
"language": "python",
|
292 |
+
"name": "python3"
|
293 |
+
},
|
294 |
+
"language_info": {
|
295 |
+
"codemirror_mode": {
|
296 |
+
"name": "ipython",
|
297 |
+
"version": 3
|
298 |
+
},
|
299 |
+
"file_extension": ".py",
|
300 |
+
"mimetype": "text/x-python",
|
301 |
+
"name": "python",
|
302 |
+
"nbconvert_exporter": "python",
|
303 |
+
"pygments_lexer": "ipython3",
|
304 |
+
"version": "3.12.2"
|
305 |
+
}
|
306 |
+
},
|
307 |
+
"nbformat": 4,
|
308 |
+
"nbformat_minor": 2
|
309 |
+
}
|
README.md → data/README.md
RENAMED
File without changes
|
data/X.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27096da97e7c093830ae02cb275c732f43a59c3aa96db08297466544f92a9b58
|
3 |
+
size 37568
|
data.csv → data/data.csv
RENAMED
File without changes
|
embeddings.npy → data/embeddings.npy
RENAMED
File without changes
|
data/logreg.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecd4a43c1bd0b0f35262c896637f2beb4e020d3a26a28dec808b5c13ec67e093
|
3 |
+
size 5407
|
data/model.cbm
ADDED
Binary file (32.6 kB). View file
|
|
movies_data.csv → data/movies_data.csv
RENAMED
File without changes
|
requirements.txt → data/requirements.txt
RENAMED
File without changes
|
data/y.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce8faa4674f06c82833ba7fddbd5e6ffb3a98bfcac2bad53facb1782a848f34a
|
3 |
+
size 248
|
search.ipynb
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/html": [
|
11 |
+
"<div>\n",
|
12 |
+
"<style scoped>\n",
|
13 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
14 |
+
" vertical-align: middle;\n",
|
15 |
+
" }\n",
|
16 |
+
"\n",
|
17 |
+
" .dataframe tbody tr th {\n",
|
18 |
+
" vertical-align: top;\n",
|
19 |
+
" }\n",
|
20 |
+
"\n",
|
21 |
+
" .dataframe thead th {\n",
|
22 |
+
" text-align: right;\n",
|
23 |
+
" }\n",
|
24 |
+
"</style>\n",
|
25 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
26 |
+
" <thead>\n",
|
27 |
+
" <tr style=\"text-align: right;\">\n",
|
28 |
+
" <th></th>\n",
|
29 |
+
" <th>name</th>\n",
|
30 |
+
" <th>description</th>\n",
|
31 |
+
" <th>link</th>\n",
|
32 |
+
" <th>year</th>\n",
|
33 |
+
" <th>imdb</th>\n",
|
34 |
+
" <th>kp</th>\n",
|
35 |
+
" <th>country</th>\n",
|
36 |
+
" <th>age</th>\n",
|
37 |
+
" <th>actors</th>\n",
|
38 |
+
" <th>genres</th>\n",
|
39 |
+
" <th>poster</th>\n",
|
40 |
+
" </tr>\n",
|
41 |
+
" </thead>\n",
|
42 |
+
" <tbody>\n",
|
43 |
+
" <tr>\n",
|
44 |
+
" <th>28</th>\n",
|
45 |
+
" <td>Мстители: Война бесконечности</td>\n",
|
46 |
+
" <td>В то время как отважные Мстители с союзниками...</td>\n",
|
47 |
+
" <td>https://www.lordfilm.bot/3670-mstiteli-vojna-b...</td>\n",
|
48 |
+
" <td>2018.0</td>\n",
|
49 |
+
" <td>8.4</td>\n",
|
50 |
+
" <td>8.1</td>\n",
|
51 |
+
" <td>США</td>\n",
|
52 |
+
" <td>18+</td>\n",
|
53 |
+
" <td>Роберт Дауни мл., Крис Хемсворт, Марк Руффало,...</td>\n",
|
54 |
+
" <td>Фильмы, Фильмы Marvel, Боевики, Приключения, Ф...</td>\n",
|
55 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2020-10...</td>\n",
|
56 |
+
" </tr>\n",
|
57 |
+
" <tr>\n",
|
58 |
+
" <th>4286</th>\n",
|
59 |
+
" <td>LEGO Мстители Марвел: Код красный</td>\n",
|
60 |
+
" <td>Супергерои объединяются, чтобы противостоять ...</td>\n",
|
61 |
+
" <td>https://www.lordfilm.bot/49932-lego-mstiteli-m...</td>\n",
|
62 |
+
" <td>2023.0</td>\n",
|
63 |
+
" <td>NaN</td>\n",
|
64 |
+
" <td>NaN</td>\n",
|
65 |
+
" <td>США</td>\n",
|
66 |
+
" <td>0+</td>\n",
|
67 |
+
" <td>NaN</td>\n",
|
68 |
+
" <td>Мультфильмы</td>\n",
|
69 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2023-10...</td>\n",
|
70 |
+
" </tr>\n",
|
71 |
+
" <tr>\n",
|
72 |
+
" <th>13384</th>\n",
|
73 |
+
" <td>Могучие рейнджеры: Потерянная галактика</td>\n",
|
74 |
+
" <td>Казалось бы всё зло уже побеждено, однако в н...</td>\n",
|
75 |
+
" <td>https://www.lordfilm.bot/18827-moguchie-rejndz...</td>\n",
|
76 |
+
" <td>1999.0</td>\n",
|
77 |
+
" <td>6.8</td>\n",
|
78 |
+
" <td>4.2</td>\n",
|
79 |
+
" <td>США, Франция, Япония</td>\n",
|
80 |
+
" <td>0+</td>\n",
|
81 |
+
" <td>Арчи Као, Регги Ролли, Дэнни Славин, Серина Ви...</td>\n",
|
82 |
+
" <td>Сериалы</td>\n",
|
83 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2021-03...</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <th>2609</th>\n",
|
87 |
+
" <td>Стражи терракоты</td>\n",
|
88 |
+
" <td>Стражи волшебной Терракоты и магические сущес...</td>\n",
|
89 |
+
" <td>https://www.lordfilm.bot/46847-strazhi-terrako...</td>\n",
|
90 |
+
" <td>2021.0</td>\n",
|
91 |
+
" <td>6.2</td>\n",
|
92 |
+
" <td>6.7</td>\n",
|
93 |
+
" <td>Китай</td>\n",
|
94 |
+
" <td>12+</td>\n",
|
95 |
+
" <td>Тань Сяо</td>\n",
|
96 |
+
" <td>Мультфильмы</td>\n",
|
97 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2022-01...</td>\n",
|
98 |
+
" </tr>\n",
|
99 |
+
" <tr>\n",
|
100 |
+
" <th>1156</th>\n",
|
101 |
+
" <td>Царство падальщиков</td>\n",
|
102 |
+
" <td>Грузовой корабль «Деметра» терпит аварию на н...</td>\n",
|
103 |
+
" <td>https://www.lordfilm.bot/49892-carstvo-padalsc...</td>\n",
|
104 |
+
" <td>2023.0</td>\n",
|
105 |
+
" <td>8.8</td>\n",
|
106 |
+
" <td>NaN</td>\n",
|
107 |
+
" <td>США</td>\n",
|
108 |
+
" <td>0+</td>\n",
|
109 |
+
" <td>Вунми Моссаку, Алиа Шокат, Сунита Мани, Боб Ст...</td>\n",
|
110 |
+
" <td>Мультфильмы</td>\n",
|
111 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2023-10...</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>3907</th>\n",
|
115 |
+
" <td>Железный человек и Халк: Союз героев</td>\n",
|
116 |
+
" <td>Когда питающийся электричеством и неуязвимый ...</td>\n",
|
117 |
+
" <td>https://www.lordfilm.bot/21296-zheleznyj-chelo...</td>\n",
|
118 |
+
" <td>2013.0</td>\n",
|
119 |
+
" <td>4.6</td>\n",
|
120 |
+
" <td>4.2</td>\n",
|
121 |
+
" <td>США</td>\n",
|
122 |
+
" <td>12+</td>\n",
|
123 |
+
" <td>Адриан Пасдар, Фред Таташиор, Ди Брэдли Бейкер...</td>\n",
|
124 |
+
" <td>Мультфильмы</td>\n",
|
125 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2021-04...</td>\n",
|
126 |
+
" </tr>\n",
|
127 |
+
" <tr>\n",
|
128 |
+
" <th>27972</th>\n",
|
129 |
+
" <td>Потерянное львиное королевство</td>\n",
|
130 |
+
" <td>Мультфильм о борьбе добра со злом на простора...</td>\n",
|
131 |
+
" <td>https://www.lordfilm.bot/24407-poterjannoe-lvi...</td>\n",
|
132 |
+
" <td>2019.0</td>\n",
|
133 |
+
" <td>3.8</td>\n",
|
134 |
+
" <td>NaN</td>\n",
|
135 |
+
" <td>США</td>\n",
|
136 |
+
" <td>18+</td>\n",
|
137 |
+
" <td>Kj Schrock, Сара Тейлор</td>\n",
|
138 |
+
" <td>Мультфильмы</td>\n",
|
139 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2021-05...</td>\n",
|
140 |
+
" </tr>\n",
|
141 |
+
" <tr>\n",
|
142 |
+
" <th>297</th>\n",
|
143 |
+
" <td>Мир Юрского периода 3: Господство</td>\n",
|
144 |
+
" <td>Катастрофическое извержение вулкана Сибо на И...</td>\n",
|
145 |
+
" <td>https://www.lordfilm.bot/47499-mir-jurskogo-pe...</td>\n",
|
146 |
+
" <td>2022.0</td>\n",
|
147 |
+
" <td>5.6</td>\n",
|
148 |
+
" <td>5.7</td>\n",
|
149 |
+
" <td>США, Мальта</td>\n",
|
150 |
+
" <td>12+</td>\n",
|
151 |
+
" <td>Крис Пратт, Брайс Даллас Ховард, Лора Дерн, Сэ...</td>\n",
|
152 |
+
" <td>Фильмы, 2022 год, Боевики, Приключения, Трилле...</td>\n",
|
153 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2022-06...</td>\n",
|
154 |
+
" </tr>\n",
|
155 |
+
" <tr>\n",
|
156 |
+
" <th>7626</th>\n",
|
157 |
+
" <td>Лузеры</td>\n",
|
158 |
+
" <td>«Лузеры» – сумасшедший экшн о предательстве и...</td>\n",
|
159 |
+
" <td>https://www.lordfilm.bot/6139-luzery-2010.html</td>\n",
|
160 |
+
" <td>2010.0</td>\n",
|
161 |
+
" <td>6.2</td>\n",
|
162 |
+
" <td>6.3</td>\n",
|
163 |
+
" <td>США, Франция</td>\n",
|
164 |
+
" <td>16+</td>\n",
|
165 |
+
" <td>Джеффри Дин Морган, Зои Салдана, Крис Эванс, И...</td>\n",
|
166 |
+
" <td>Фильмы, Боевики, Детективы, Комедии, Криминаль...</td>\n",
|
167 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2021-01...</td>\n",
|
168 |
+
" </tr>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>25332</th>\n",
|
171 |
+
" <td>Ancestral World</td>\n",
|
172 |
+
" <td>Пытаясь спасти своего брата и королевство сво...</td>\n",
|
173 |
+
" <td>https://www.lordfilm.bot/10306-ancestral-world...</td>\n",
|
174 |
+
" <td>2020.0</td>\n",
|
175 |
+
" <td>2.5</td>\n",
|
176 |
+
" <td>NaN</td>\n",
|
177 |
+
" <td>США</td>\n",
|
178 |
+
" <td>0+</td>\n",
|
179 |
+
" <td>Jennifer Mischiati, Джо Морелли, Райан А. Филл...</td>\n",
|
180 |
+
" <td>Фильмы, Боевики, 2020 год, Фильмы про монстров</td>\n",
|
181 |
+
" <td>https://www.lordfilm.bot/uploads/posts/2021-02...</td>\n",
|
182 |
+
" </tr>\n",
|
183 |
+
" </tbody>\n",
|
184 |
+
"</table>\n",
|
185 |
+
"</div>"
|
186 |
+
],
|
187 |
+
"text/plain": [
|
188 |
+
" name \\\n",
|
189 |
+
"28 Мстители: Война бесконечности \n",
|
190 |
+
"4286 LEGO Мстители Марвел: Код красный \n",
|
191 |
+
"13384 Могучие рейнджеры: Потерянная галактика \n",
|
192 |
+
"2609 Стражи терракоты \n",
|
193 |
+
"1156 Царство падальщиков \n",
|
194 |
+
"3907 Железный человек и Халк: Союз героев \n",
|
195 |
+
"27972 Потерянное львиное королевство \n",
|
196 |
+
"297 Мир Юрского периода 3: Господство \n",
|
197 |
+
"7626 Лузеры \n",
|
198 |
+
"25332 Ancestral World \n",
|
199 |
+
"\n",
|
200 |
+
" description \\\n",
|
201 |
+
"28 В то время как отважные Мстители с союзниками... \n",
|
202 |
+
"4286 Супергерои объединяются, чтобы противостоять ... \n",
|
203 |
+
"13384 Казалось бы всё зло уже побеждено, однако в н... \n",
|
204 |
+
"2609 Стражи волшебной Терракоты и магические сущес... \n",
|
205 |
+
"1156 Грузовой корабль «Деметра» терпит аварию на н... \n",
|
206 |
+
"3907 Когда питающийся электричеством и неуязвимый ... \n",
|
207 |
+
"27972 Мультфильм о борьбе добра со злом на простора... \n",
|
208 |
+
"297 Катастрофическое извержение вулкана Сибо на И... \n",
|
209 |
+
"7626 «Лузеры» – сумасшедший экшн о предательстве и... \n",
|
210 |
+
"25332 Пытаясь спасти своего брата и королевство сво... \n",
|
211 |
+
"\n",
|
212 |
+
" link year imdb kp \\\n",
|
213 |
+
"28 https://www.lordfilm.bot/3670-mstiteli-vojna-b... 2018.0 8.4 8.1 \n",
|
214 |
+
"4286 https://www.lordfilm.bot/49932-lego-mstiteli-m... 2023.0 NaN NaN \n",
|
215 |
+
"13384 https://www.lordfilm.bot/18827-moguchie-rejndz... 1999.0 6.8 4.2 \n",
|
216 |
+
"2609 https://www.lordfilm.bot/46847-strazhi-terrako... 2021.0 6.2 6.7 \n",
|
217 |
+
"1156 https://www.lordfilm.bot/49892-carstvo-padalsc... 2023.0 8.8 NaN \n",
|
218 |
+
"3907 https://www.lordfilm.bot/21296-zheleznyj-chelo... 2013.0 4.6 4.2 \n",
|
219 |
+
"27972 https://www.lordfilm.bot/24407-poterjannoe-lvi... 2019.0 3.8 NaN \n",
|
220 |
+
"297 https://www.lordfilm.bot/47499-mir-jurskogo-pe... 2022.0 5.6 5.7 \n",
|
221 |
+
"7626 https://www.lordfilm.bot/6139-luzery-2010.html 2010.0 6.2 6.3 \n",
|
222 |
+
"25332 https://www.lordfilm.bot/10306-ancestral-world... 2020.0 2.5 NaN \n",
|
223 |
+
"\n",
|
224 |
+
" country age \\\n",
|
225 |
+
"28 США 18+ \n",
|
226 |
+
"4286 США 0+ \n",
|
227 |
+
"13384 США, Франция, Япония 0+ \n",
|
228 |
+
"2609 Китай 12+ \n",
|
229 |
+
"1156 США 0+ \n",
|
230 |
+
"3907 США 12+ \n",
|
231 |
+
"27972 США 18+ \n",
|
232 |
+
"297 США, Мальта 12+ \n",
|
233 |
+
"7626 США, Франция 16+ \n",
|
234 |
+
"25332 США 0+ \n",
|
235 |
+
"\n",
|
236 |
+
" actors \\\n",
|
237 |
+
"28 Роберт Дауни мл., Крис Хемсворт, Марк Руффало,... \n",
|
238 |
+
"4286 NaN \n",
|
239 |
+
"13384 Арчи Као, Регги Ролли, Дэнни Славин, Серина Ви... \n",
|
240 |
+
"2609 Тань Сяо \n",
|
241 |
+
"1156 Вунми Моссаку, Алиа Шокат, Сунита Мани, Боб Ст... \n",
|
242 |
+
"3907 Адриан Пасдар, Фред Таташиор, Ди Брэдли Бейкер... \n",
|
243 |
+
"27972 Kj Schrock, Сара Тейлор \n",
|
244 |
+
"297 Крис Пратт, Брайс Даллас Ховард, Лора Дерн, Сэ... \n",
|
245 |
+
"7626 Джеффри Дин Морган, Зои Салдана, Крис Эванс, И... \n",
|
246 |
+
"25332 Jennifer Mischiati, Джо Морелли, Райан А. Филл... \n",
|
247 |
+
"\n",
|
248 |
+
" genres \\\n",
|
249 |
+
"28 Фильмы, Фильмы Marvel, Боевики, Приключения, Ф... \n",
|
250 |
+
"4286 Мультфильмы \n",
|
251 |
+
"13384 Сериалы \n",
|
252 |
+
"2609 Мультфильмы \n",
|
253 |
+
"1156 Мультфильмы \n",
|
254 |
+
"3907 Мультфильмы \n",
|
255 |
+
"27972 Мультфильмы \n",
|
256 |
+
"297 Фильмы, 2022 год, Боевики, Приключения, Трилле... \n",
|
257 |
+
"7626 Фильмы, Боевики, Детективы, Комедии, Криминаль... \n",
|
258 |
+
"25332 Фильмы, Боевики, 2020 год, Фильмы про монстров \n",
|
259 |
+
"\n",
|
260 |
+
" poster \n",
|
261 |
+
"28 https://www.lordfilm.bot/uploads/posts/2020-10... \n",
|
262 |
+
"4286 https://www.lordfilm.bot/uploads/posts/2023-10... \n",
|
263 |
+
"13384 https://www.lordfilm.bot/uploads/posts/2021-03... \n",
|
264 |
+
"2609 https://www.lordfilm.bot/uploads/posts/2022-01... \n",
|
265 |
+
"1156 https://www.lordfilm.bot/uploads/posts/2023-10... \n",
|
266 |
+
"3907 https://www.lordfilm.bot/uploads/posts/2021-04... \n",
|
267 |
+
"27972 https://www.lordfilm.bot/uploads/posts/2021-05... \n",
|
268 |
+
"297 https://www.lordfilm.bot/uploads/posts/2022-06... \n",
|
269 |
+
"7626 https://www.lordfilm.bot/uploads/posts/2021-01... \n",
|
270 |
+
"25332 https://www.lordfilm.bot/uploads/posts/2021-02... "
|
271 |
+
]
|
272 |
+
},
|
273 |
+
"execution_count": 5,
|
274 |
+
"metadata": {},
|
275 |
+
"output_type": "execute_result"
|
276 |
+
}
|
277 |
+
],
|
278 |
+
"source": [
|
279 |
+
"\n",
|
280 |
+
"\n",
|
281 |
+
"from transformers import AutoTokenizer, AutoModel\n",
|
282 |
+
"import numpy as np\n",
|
283 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
284 |
+
"import torch\n",
|
285 |
+
"import pandas as pd\n",
|
286 |
+
"\n",
|
287 |
+
"\n",
|
288 |
+
"data = np.load('embeddings.npy')\n",
|
289 |
+
"movies = pd.read_csv('data.csv')\n",
|
290 |
+
"\n",
|
291 |
+
"def get_embeddings():\n",
|
292 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"cointegrated/rubert-tiny2\")\n",
|
293 |
+
" model = AutoModel.from_pretrained(\"cointegrated/rubert-tiny2\")\n",
|
294 |
+
" # model.cuda() \n",
|
295 |
+
" return model, tokenizer\n",
|
296 |
+
"\n",
|
297 |
+
"def embed_bert_cls(text ):\n",
|
298 |
+
" model, tokenizer = get_embeddings()\n",
|
299 |
+
" t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')\n",
|
300 |
+
" with torch.no_grad():\n",
|
301 |
+
" model_output = model(**{k: v.to(model.device) for k, v in t.items()})\n",
|
302 |
+
" embeddings = model_output.last_hidden_state[:, 0, :]\n",
|
303 |
+
" embeddings = torch.nn.functional.normalize(embeddings)\n",
|
304 |
+
" return embeddings[0].cpu().numpy()\n",
|
305 |
+
"\n",
|
306 |
+
"def top_indices(array, n):\n",
|
307 |
+
"\n",
|
308 |
+
" sorted_indices = np.argsort(array)[::-1]\n",
|
309 |
+
" # Выбираем первые n индексов\n",
|
310 |
+
" top_n_indices = sorted_indices[:n]\n",
|
311 |
+
" return top_n_indices\n",
|
312 |
+
"\n",
|
313 |
+
"\n",
|
314 |
+
"def predict_rating(input_search):\n",
|
315 |
+
"\n",
|
316 |
+
" emb = embed_bert_cls(input_search)\n",
|
317 |
+
" X=np.column_stack((data, np.tile(emb, (data.shape[0], 1))))\n",
|
318 |
+
"\n",
|
319 |
+
"\n",
|
320 |
+
" # from catboost import CatBoostRanker\n",
|
321 |
+
" # cb= CatBoostRanker()\n",
|
322 |
+
" # cb.load_model('model.cbm')\n",
|
323 |
+
" # y = cb.predict(X)\n",
|
324 |
+
"\n",
|
325 |
+
" # import pickle\n",
|
326 |
+
" # with open('logreg.pkl', 'rb') as f:\n",
|
327 |
+
" # logreg = pickle.load(f)\n",
|
328 |
+
" # y = logreg.predict(X)\n",
|
329 |
+
"\n",
|
330 |
+
" y= cosine_similarity(data, emb.reshape(1, -1)).reshape(-1)\n",
|
331 |
+
"\n",
|
332 |
+
" return top_indices(y, 10)\n",
|
333 |
+
"\n",
|
334 |
+
"\n",
|
335 |
+
"preds=predict_rating(\"Пока Мстители и их союзники продолжают защищать мир от различных опасностей, с которыми не смог бы справиться один супергерой, новая угроза возникает из космоса: Танос. Межгалактический тиран преследует цель \")\n",
|
336 |
+
"\n",
|
337 |
+
"movies.iloc[preds]"
|
338 |
+
]
|
339 |
+
}
|
340 |
+
],
|
341 |
+
"metadata": {
|
342 |
+
"kernelspec": {
|
343 |
+
"display_name": "cv",
|
344 |
+
"language": "python",
|
345 |
+
"name": "python3"
|
346 |
+
},
|
347 |
+
"language_info": {
|
348 |
+
"codemirror_mode": {
|
349 |
+
"name": "ipython",
|
350 |
+
"version": 3
|
351 |
+
},
|
352 |
+
"file_extension": ".py",
|
353 |
+
"mimetype": "text/x-python",
|
354 |
+
"name": "python",
|
355 |
+
"nbconvert_exporter": "python",
|
356 |
+
"pygments_lexer": "ipython3",
|
357 |
+
"version": "3.12.2"
|
358 |
+
}
|
359 |
+
},
|
360 |
+
"nbformat": 4,
|
361 |
+
"nbformat_minor": 2
|
362 |
+
}
|