gen-ai-chatbot / app.py
rudra0410hf's picture
Rename main.py to app.py
b7582dc verified
import os
import streamlit as st
from dotenv import load_dotenv
import google.generativeai as gen_ai
#Load environment variables
load_dotenv()
#Configure streamlit page settings
st.set_page_config(
page_title="Chat with Gemini-Pro!",
page_icon=":brain:", #Favicon emoji
layout="centered", #page layout option
)
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
#Set up Google Gemini-pro AI Model
gen_ai.configure(api_key=GOOGLE_API_KEY)
model = gen_ai.GenerativeModel('gemini-2.0-flash-exp')
#Function to translate roles between Gemini-pro and streamlit terminology
def translate_role_for_streamlit(user_role):
if user_role == "model":
return "assistant"
else:
return user_role
#Initialize chat session in streamlit if not already present
if "chat_session" not in st.session_state:
st.session_state.chat_session = model.start_chat(history=[])
#Display chatbot's title on the page
st.title("🤖 Gemini-Pro Boty😎")
#display chat history
for message in st.session_state.chat_session.history:
with st.chat_message(translate_role_for_streamlit(message.role)):
st.markdown(message.parts[0].text)
#input field for user
user_prompt = st.chat_input("Ask Gemini-pro.. ")
if user_prompt:
#Add user's message to chat and display it
st.chat_message("user").markdown(user_prompt)
#send user's message to the gemini-pro and get the response
gemini_response = st.session_state.chat_session.send_message(user_prompt)
#display gemini - pro response
with st.chat_message("assistant"):
st.markdown(gemini_response.text)