import os import streamlit as st from dotenv import load_dotenv import google.generativeai as gen_ai #Load environment variables load_dotenv() #Configure streamlit page settings st.set_page_config( page_title="Chat with Gemini-Pro!", page_icon=":brain:", #Favicon emoji layout="centered", #page layout option ) GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") #Set up Google Gemini-pro AI Model gen_ai.configure(api_key=GOOGLE_API_KEY) model = gen_ai.GenerativeModel('gemini-2.0-flash-exp') #Function to translate roles between Gemini-pro and streamlit terminology def translate_role_for_streamlit(user_role): if user_role == "model": return "assistant" else: return user_role #Initialize chat session in streamlit if not already present if "chat_session" not in st.session_state: st.session_state.chat_session = model.start_chat(history=[]) #Display chatbot's title on the page st.title("🤖 Gemini-Pro Boty😎") #display chat history for message in st.session_state.chat_session.history: with st.chat_message(translate_role_for_streamlit(message.role)): st.markdown(message.parts[0].text) #input field for user user_prompt = st.chat_input("Ask Gemini-pro.. ") if user_prompt: #Add user's message to chat and display it st.chat_message("user").markdown(user_prompt) #send user's message to the gemini-pro and get the response gemini_response = st.session_state.chat_session.send_message(user_prompt) #display gemini - pro response with st.chat_message("assistant"): st.markdown(gemini_response.text)