Rudra Rahul Chothe
Upload folder using huggingface_hub
6f0417c verified
raw
history blame
6.56 kB
feature_extractor.py -
import tensorflow as tf
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.efficientnet import preprocess_input
import numpy as np
class FeatureExtractor:
def __init__(self):
# Load pretrained EfficientNetB0 model without top layers
base_model = EfficientNetB0(weights='imagenet', include_top=False, pooling='avg')
self.model = tf.keras.Model(inputs=base_model.input, outputs=base_model.output)
def extract_features(self, img_path):
# Load and preprocess the image
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
expanded_img = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img)
# Extract features
features = self.model.predict(preprocessed_img)
return features.flatten()
preprocessing.py -
import os
import pickle
from .feature_extractor import FeatureExtractor
import time
from tqdm import tqdm
def precompute_embeddings(image_dir='data/images', output_path='data/embeddings.pkl'):
# Initialize the feature extractor
extractor = FeatureExtractor()
embeddings = []
image_paths = []
# Get total number of valid images
valid_images = [f for f in os.listdir(image_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
total_images = len(valid_images)
print(f"\nFound {total_images} images to process")
# Estimate time (assuming ~1 second per image for EfficientNetB0)
estimated_time = total_images * 1 # 1 second per image
print(f"Estimated time: {estimated_time//60} minutes and {estimated_time%60} seconds\n")
# Use tqdm for progress bar
start_time = time.time()
for idx, filename in enumerate(tqdm(valid_images, desc="Processing images")):
if filename.endswith(('.png', '.jpg', '.jpeg')):
img_path = os.path.join(image_dir, filename)
try:
# Show current image being processed
print(f"\rProcessing image {idx+1}/{total_images}: {filename}", end="")
embedding = extractor.extract_features(img_path)
embeddings.append(embedding)
image_paths.append(img_path)
# Calculate and show remaining time
elapsed_time = time.time() - start_time
avg_time_per_image = elapsed_time / (idx + 1)
remaining_images = total_images - (idx + 1)
estimated_remaining_time = remaining_images * avg_time_per_image
print(f" | Remaining time: {estimated_remaining_time//60:.0f}m {estimated_remaining_time%60:.0f}s")
except Exception as e:
print(f"\nError processing {filename}: {e}")
# Save embeddings and paths
with open(output_path, 'wb') as f:
pickle.dump({'embeddings': embeddings, 'image_paths': image_paths}, f)
total_time = time.time() - start_time
print(f"\nProcessing complete!")
print(f"Total time taken: {total_time//60:.0f} minutes and {total_time%60:.0f} seconds")
print(f"Successfully processed {len(embeddings)}/{total_images} images")
print(f"Embeddings saved to {output_path}")
return embeddings, image_paths
if __name__ == "__main__":
precompute_embeddings()
similarity_search.py -
import faiss
import numpy as np
import pickle
import os
class SimilaritySearchEngine:
def __init__(self, embeddings_path='data/embeddings.pkl'):
# Load precomputed embeddings
with open(embeddings_path, 'rb') as f:
data = pickle.load(f)
self.embeddings = data['embeddings']
self.image_paths = data['image_paths']
# Create FAISS index
dimension = len(self.embeddings[0])
self.index = faiss.IndexFlatL2(dimension)
self.index.add(np.array(self.embeddings))
def search_similar_images(self, query_embedding, top_k=5):
# Perform similarity search
distances, indices = self.index.search(np.array([query_embedding]), top_k)
return [self.image_paths[idx] for idx in indices[0]], distances[0]
app.py -
import streamlit as st
from PIL import Image
from src.feature_extractor import FeatureExtractor
from src.similarity_search import SimilaritySearchEngine
def main():
st.title('Image Similarity Search')
# Upload query image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Load the uploaded image
query_img = Image.open(uploaded_file)
# Resize and display the query image
query_img_resized = query_img.resize((263, 385))
st.image(query_img_resized, caption='Uploaded Image', use_container_width=False)
# Feature extraction and similarity search
if st.button("Search Similar Images"):
with st.spinner("Analyzing query image..."):
try:
# Initialize feature extractor and search engine
extractor = FeatureExtractor()
search_engine = SimilaritySearchEngine()
# Save the uploaded image temporarily
query_img_path = 'temp_query_image.jpg'
query_img.save(query_img_path)
# Extract features from the query image
query_embedding = extractor.extract_features(query_img_path)
# Perform similarity search
similar_images, distances = search_engine.search_similar_images(query_embedding)
# Display similar images
st.subheader('Similar Images')
cols = st.columns(len(similar_images))
for i, (img_path, dist) in enumerate(zip(similar_images, distances)):
with cols[i]:
similar_img = Image.open(img_path).resize((375, 550))
st.image(similar_img, caption=f'Distance: {dist:.2f}', use_container_width=True)
except Exception as e:
st.error(f"Error during similarity search: {e}")
if __name__ == '__main__':
main()