File size: 77,215 Bytes
1ccf66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*#Image to Image Translation#*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: tensorflow==2.15.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (2.15.0)\n",
      "Requirement already satisfied: tensorflow-intel==2.15.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow==2.15.0) (2.15.0)\n",
      "Requirement already satisfied: grpcio<2.0,>=1.24.3 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (1.70.0)\n",
      "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.31.0)\n",
      "Requirement already satisfied: numpy<2.0.0,>=1.23.5 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (1.26.4)\n",
      "Requirement already satisfied: packaging in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (24.2)\n",
      "Requirement already satisfied: tensorflow-estimator<2.16,>=2.15.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.15.0)\n",
      "Requirement already satisfied: libclang>=13.0.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (18.1.1)\n",
      "Requirement already satisfied: six>=1.12.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (1.17.0)\n",
      "Requirement already satisfied: absl-py>=1.0.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.1.0)\n",
      "Requirement already satisfied: setuptools in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (65.5.0)\n",
      "Requirement already satisfied: h5py>=2.9.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.12.1)\n",
      "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.6.0)\n",
      "Requirement already satisfied: flatbuffers>=23.5.26 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (25.1.24)\n",
      "Requirement already satisfied: google-pasta>=0.1.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.2.0)\n",
      "Requirement already satisfied: termcolor>=1.1.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.5.0)\n",
      "Requirement already satisfied: astunparse>=1.6.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (1.6.3)\n",
      "Requirement already satisfied: typing-extensions>=3.6.6 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (4.12.2)\n",
      "Requirement already satisfied: tensorboard<2.16,>=2.15 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.15.2)\n",
      "Requirement already satisfied: keras<2.16,>=2.15.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.15.0)\n",
      "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.20.3)\n",
      "Requirement already satisfied: ml-dtypes~=0.2.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.2.0)\n",
      "Requirement already satisfied: wrapt<1.15,>=1.11.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (1.14.1)\n",
      "Requirement already satisfied: opt-einsum>=2.3.2 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.4.0)\n",
      "Requirement already satisfied: wheel<1.0,>=0.23.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.45.1)\n",
      "Requirement already satisfied: requests<3,>=2.21.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.32.3)\n",
      "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.7.2)\n",
      "Requirement already satisfied: werkzeug>=1.0.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.1.3)\n",
      "Requirement already satisfied: markdown>=2.6.8 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.7)\n",
      "Requirement already satisfied: google-auth<3,>=1.6.3 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.38.0)\n",
      "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (1.2.1)\n",
      "Requirement already satisfied: cachetools<6.0,>=2.0.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (5.5.1)\n",
      "Requirement already satisfied: pyasn1-modules>=0.2.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.4.1)\n",
      "Requirement already satisfied: rsa<5,>=3.1.4 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (4.9)\n",
      "Requirement already satisfied: requests-oauthlib>=0.7.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.0.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.4.1)\n",
      "Requirement already satisfied: idna<4,>=2.5 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.10)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (2025.1.31)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (2.3.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.1.1 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from werkzeug>=1.0.1->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.0.2)\n",
      "Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (0.6.1)\n",
      "Requirement already satisfied: oauthlib>=3.0.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow-intel==2.15.0->tensorflow==2.15.0) (3.2.2)\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "[notice] A new release of pip is available: 23.0.1 -> 25.0.1\n",
      "[notice] To update, run: python.exe -m pip install --upgrade pip\n"
     ]
    }
   ],
   "source": [
    "!pip install tensorflow==2.15.0\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: tensorflow-probability==0.23.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (0.23.0)\n",
      "Requirement already satisfied: six>=1.10.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (1.17.0)\n",
      "Requirement already satisfied: decorator in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (5.1.1)\n",
      "Requirement already satisfied: cloudpickle>=1.3 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (3.1.1)\n",
      "Requirement already satisfied: gast>=0.3.2 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (0.6.0)\n",
      "Requirement already satisfied: numpy>=1.13.3 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (1.26.4)\n",
      "Requirement already satisfied: absl-py in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (2.1.0)\n",
      "Requirement already satisfied: dm-tree in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from tensorflow-probability==0.23.0) (0.1.9)\n",
      "Requirement already satisfied: attrs>=18.2.0 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from dm-tree->tensorflow-probability==0.23.0) (25.1.0)\n",
      "Requirement already satisfied: wrapt>=1.11.2 in d:\\vs code\\web dev\\projects\\image2image\\image\\lib\\site-packages (from dm-tree->tensorflow-probability==0.23.0) (1.14.1)\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "[notice] A new release of pip is available: 23.0.1 -> 25.0.1\n",
      "[notice] To update, run: python.exe -m pip install --upgrade pip\n"
     ]
    }
   ],
   "source": [
    "!pip install tensorflow-probability==0.23.0"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*1️⃣ Import Necessary Libraries*\n",
    "\n",
    "1.*TensorFlow/Keras* for building and training deep learning models.\n",
    "\n",
    "2.*NumPy* for numerical operations/n.\n",
    "\n",
    "3.*Matplotlib* for visualizing the results.\n",
    "\n",
    "4.*OpenCV/PIL* for image processing.\n",
    "\n",
    "5.*TensorFlow* Addons for additional loss functions and layers (e.g., InstanceNorm).\n",
    "\n",
    "6.*TensorFlow Datasets* (or custom loaders) to load CT & MRI images."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From d:\\VS CODE\\Web Dev\\Projects\\Image2Image\\image\\lib\\site-packages\\keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
      "\n",
      "WARNING:tensorflow:From d:\\VS CODE\\Web Dev\\Projects\\Image2Image\\image\\lib\\site-packages\\tensorflow_probability\\python\\internal\\backend\\numpy\\_utils.py:48: The name tf.logging.TaskLevelStatusMessage is deprecated. Please use tf.compat.v1.logging.TaskLevelStatusMessage instead.\n",
      "\n",
      "WARNING:tensorflow:From d:\\VS CODE\\Web Dev\\Projects\\Image2Image\\image\\lib\\site-packages\\tensorflow_probability\\python\\internal\\backend\\numpy\\_utils.py:48: The name tf.control_flow_v2_enabled is deprecated. Please use tf.compat.v1.control_flow_v2_enabled instead.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow.keras import layers, Model\n",
    "import numpy as np\n",
    "import cv2\n",
    "import pathlib\n",
    "import matplotlib.pyplot as plt\n",
    "import tensorflow_probability as tfp\n",
    "\n",
    "tfd = tfp.distributions"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2️⃣ *Configuration (Hyperparameters)*\n",
    "\n",
    "This step defines the key settings for training.\n",
    "\n",
    "\n",
    "Image size: The input image dimensions.\n",
    "\n",
    "Latent dimension: The size of the encoded representation in the VAE.\n",
    "\n",
    "Learning rate: Defines how fast the model updates weights.\n",
    "\n",
    "Batch size & epochs: Training parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "IMAGE_SHAPE = (256, 256, 3)\n",
    "LATENT_DIM = 256\n",
    "FILTERS = 16\n",
    "KERNEL = 3\n",
    "LEARNING_RATE = 0.0001\n",
    "WEIGHT_DECAY = 6e-8\n",
    "BATCH_SIZE = 1\n",
    "EPOCHS = 10"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "* ===================== Architecture Components =====================*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*3️⃣ Sampling Layer for Variational Autoencoder (VAE)*\n",
    "\n",
    "The sampling layer is a crucial part of the VAE, where we sample from the latent space.\n",
    "\n",
    "🔹 What We Need  \n",
    "\n",
    "The encoder outputs μ (mean) and σ (log variance).\n",
    "\n",
    "This layer samples from a normal distribution using the reparameterization trick."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Sampling(layers.Layer):\n",
    "    def call(self, inputs):\n",
    "        z_mean, z_log_var = inputs\n",
    "        batch = tf.shape(z_mean)[0]\n",
    "        dim = tf.shape(z_mean)[1]\n",
    "        epsilon = tf.random.normal(shape=(batch, dim))\n",
    "        return z_mean + tf.exp(0.5 * z_log_var) * epsilon"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It inherits from layers.Layer, meaning it's a custom layer that can be used like any other Keras layer.\n",
    "\n",
    "📍inputs is a tuple containing:\n",
    "\n",
    "    z_mean: The mean vector output from the encoder.\n",
    "\n",
    "    z_log_var: The log variance vector output from the encoder.\n",
    "\n",
    "📍This unpacks the inputs into two separate variables:\n",
    "\n",
    "    z_mean: Represents the mean of the latent distribution.\n",
    "\n",
    "    z_log_var: Represents the log variance of the latent distribution.\n",
    "\n",
    "📍Why log variance?\n",
    "\n",
    "Instead of using variance (σ²), we use log(σ²) because:\n",
    "\n",
    "Numerical Stability: Log prevents exploding/vanishing gradients.\n",
    "\n",
    "Easier Optimization: exp(log(σ²) / 2) makes variance always positive.\n",
    "\n",
    "\n",
    "📍This determines:\n",
    "    batch: The number of samples in the batch.\n",
    "    dim: The size of the latent space (e.g., 128 if LATENT_DIM = 128).\n",
    "\n",
    "\n",
    "📍Generates random values from a standard normal distribution (𝒩(0,1)).\n",
    "\n",
    "epsilon.shape = (batch, dim), meaning every sample gets a unique noise vector.\n",
    "\n",
    "Why do we need epsilon?\n",
    "\n",
    "Instead of directly using z_mean, we add controlled randomness to ensure the VAE learns a smooth latent space.\n",
    "\n",
    "* Reparameterization Trick*\n",
    "\n",
    "    The latent space follows a normal distribution:\n",
    "\n",
    "    𝑧 ∼ 𝒩(μ, σ²)\n",
    "\n",
    "    A sample is drawn from this distribution:\n",
    "\n",
    "    𝑧 = μ + σ * ε, where ε ∼ 𝒩(0,1).\n",
    "\n",
    "    Since z_log_var = log(σ²), we compute:\n",
    "\n",
    "    σ = exp(0.5 * log(σ²)) = exp(0.5 * z_log_var).\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*🔹 Residual Block in Detail*\n",
    "\n",
    "This function defines a residual block, a key building block inspired by ResNet (Residual Networks). Residual blocks help in training deep neural networks efficiently by allowing gradient flow through skip connections.\n",
    "\n",
    "inputs: The input tensor (features from the previous layer).\n",
    "\n",
    "filters: The number of filters (channels) in the convolution layers.\n",
    "\n",
    "use_norm: Whether to apply Group Normalization (helps stabilize training)\n",
    "\n",
    "Step 1️⃣: First Convolution + Activation :\n",
    "\n",
    "    Applies a 2D Convolution (Conv2D) with filters filters.\n",
    "\n",
    "    KERNEL (not defined in this function) should be the kernel size (e.g., 3x3 or 5x5).\n",
    "\n",
    "    padding='same': Ensures the output size is the same as the input.\n",
    "\n",
    "    Leaky ReLU activation (alpha=0.2):\n",
    "\n",
    "        Helps avoid dead neurons (better than regular ReLU).\n",
    "        \n",
    "        Allows a small gradient flow for negative values.\n",
    "\n",
    "Step 2️⃣: Group Normalization (Optional)\n",
    "\n",
    "Step 3️⃣: Second Convolution + Activation\n",
    "\n",
    "    Applies another Conv2D layer with the same number of filters.\n",
    "\n",
    "    Uses LeakyReLU again for better gradient flow.\n",
    "\n",
    "    Why two convolutions?\n",
    "\n",
    "        The first convolution learns low-level features.\n",
    "        \n",
    "        The second convolution refines the learned features.\n",
    "\n",
    "\n",
    "Step 5️⃣: Shortcut Connection (Skip Connection)\n",
    "\n",
    "    The original input is passed through a 1x1 convolution.\n",
    "\n",
    "    This matches the number of filters with the residual output.\n",
    "\n",
    "    Why 1x1 convolution?\n",
    "\n",
    "    Ensures the shortcut has the same number of filters as x.\n",
    "\n",
    "    Helps in adjusting dimensions when the number of channels changes.\n",
    "\n",
    "Step 6️⃣: Merge Shortcut & Residual Path\n",
    "\n",
    "    Merges the shortcut and residual path using element-wise maximum.\n",
    "        \n",
    "    Why maximum() instead of addition (+)?\n",
    "\n",
    "    Prevents negative values, which can help improve training stability.\n",
    "    \n",
    "    Focuses on stronger features from either the residual or shortcut path.\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def residual_block(inputs, filters, use_norm=True):\n",
    "    x = layers.Conv2D(filters, KERNEL, padding='same')(inputs)\n",
    "    x = layers.LeakyReLU(alpha=0.2)(x)\n",
    "    if use_norm:\n",
    "        x = layers.GroupNormalization(groups=1)(x)\n",
    "    x = layers.Conv2D(filters, KERNEL, padding='same')(x)\n",
    "    x = layers.LeakyReLU(alpha=0.2)(x)\n",
    "    if use_norm:\n",
    "        x = layers.GroupNormalization(groups=1)(x)\n",
    "    shortcut = layers.Conv2D(filters, 1, padding='same')(inputs)\n",
    "    return layers.maximum([x, shortcut])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "* 1️⃣ Encoder  and Decoder Block*\n",
    "\n",
    "*Encoder*\n",
    "\n",
    "1️⃣ Pass Input Through Residual Block\n",
    "\n",
    "Uses a residual block (previously defined).\n",
    "\n",
    "Extracts important features while keeping the original information.\n",
    "\n",
    "Helps prevent vanishing gradients and allows deep networks to train effectively.\n",
    "\n",
    "2️⃣ Store the Skip Connection\n",
    "\n",
    "The skip connection stores the output of the residual block.\n",
    "\n",
    "It will be used later in the decoder to restore lost details.\n",
    "\n",
    "3️⃣ Downsampling (Reduce Spatial Size)\n",
    "\n",
    "Applies Max Pooling to reduce the spatial size (height & width).\n",
    "\n",
    "Why?\n",
    "\n",
    "Reduces computation.\n",
    "\n",
    "Forces the model to learn high-level features instead of pixel details.\n",
    "\n",
    "4️⃣ Return Downsampled Output & Skip Connection\n",
    "\n",
    "Outputs:\n",
    "\n",
    "x: The downsampled feature map.\n",
    "\n",
    "skip: The saved feature map (used later in the decoder).\n",
    "\n",
    "\n",
    "🔥 2️⃣ Decoder Block\n",
    "\n",
    "1️⃣ Upsampling (Increase Spatial Size):\n",
    "\n",
    "Uses Conv2DTranspose (transposed convolution, aka deconvolution).\n",
    "\n",
    "Upsamples the input by a factor of 2 (increases spatial size).\n",
    "\n",
    "Why?\n",
    "\n",
    "Increases resolution to match the original input image.\n",
    "\n",
    "2️⃣ Merge Skip Connection\n",
    "\n",
    "Combines the upsampled output with the skip connection.\n",
    "\n",
    "Uses element-wise maximum instead of addition.\n",
    "\n",
    "Why?\n",
    "\n",
    "Ensures the model focuses on the most important features.\n",
    "\n",
    "Prevents loss of key information during encoding.\n",
    "\n",
    "3️⃣ Apply a Residual Block\n",
    "\n",
    "Uses a residual block to refine the upsampled output.\n",
    "\n",
    "Helps recover lost details and maintain stability.\n",
    "\n",
    "4️⃣ Return the Processed Output\n",
    "\n",
    "Returns the final feature map after upsampling and refinement.\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def encoder_block(inputs, filters, use_norm=True):\n",
    "    x = residual_block(inputs, filters, use_norm)\n",
    "    skip = x\n",
    "    x = layers.MaxPooling2D()(x)\n",
    "    return x, skip\n",
    "\n",
    "def decoder_block(inputs, skip, filters, use_norm=True):\n",
    "    x = layers.Conv2DTranspose(filters, KERNEL, strides=2, padding='same')(inputs)\n",
    "    x = layers.maximum([x, skip])\n",
    "    x = residual_block(x, filters, use_norm)\n",
    "    return x\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "* ===================== Generator =====================*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This function builds the generator model for a Variational Autoencoder (VAE) with a CycleGAN architecture. The generator is responsible for converting a CT scan into an MRI image (or vice versa) by learning to map the two domains.\n",
    "\n",
    ".\n",
    "\n",
    "🛠️ What This Function Does?\n",
    "\n",
    "It encodes an input image into a latent space.\n",
    "\n",
    "It applies variational sampling to introduce a probabilistic distribution.\n",
    "\n",
    "It decodes the latent representation back into an image.\n",
    "\n",
    "Uses skip connections to retain features across layers.\n",
    "\n",
    "1️⃣ Input Layer\n",
    "\n",
    "Defines the input tensor with the given IMAGE_SHAPE (e.g., (256, 256, 3), for RGB images).\n",
    "\n",
    "2️⃣ Encoder: Downsampling the Image\n",
    "\n",
    "    Each encoder block halves the spatial resolution but doubles the filters.\n",
    "\n",
    "    Stores skip connections (s1, s2, ..., s7) for later use in the decoder.\n",
    "\n",
    "    After e7, the image is highly compressed into a feature map.\n",
    "\n",
    "3️⃣ Latent Space (Variational Sampling)\n",
    "\n",
    "    Flattens the feature map into a 1D vector.\n",
    "\n",
    "    Uses two dense layers to compute:\n",
    "\n",
    "    z_mean → The mean of the latent distribution.\n",
    "\n",
    "    z_log_var → The logarithm of the variance.\n",
    "\n",
    "    Uses reparameterization trick (Sampling layer) to ensure backpropagation works in VAE.\n",
    "\n",
    "4️⃣ Reshape for Decoder\n",
    "\n",
    "    Expands z into a 2x2 feature map to match e7 dimensions.\n",
    "\n",
    "    Prepares the latent vector for decoding.\n",
    "\n",
    "5️⃣ Decoder: Upsampling the Image\n",
    "\n",
    "    Each decoder block upsamples the feature map back to the original size.\n",
    "\n",
    "    Uses skip connections (s1, s2, ..., s7) to restore spatial information.\n",
    "\n",
    "    Mirrors the encoder process but in reverse.\n",
    "\n",
    "6️⃣ Final Output Layer\n",
    "\n",
    "    Uses a Conv2D layer to produce the final RGB image.\n",
    "    \n",
    "    Applies sigmoid activation to ensure pixel values remain between [0,1].\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def build_generator(name):\n",
    "    inputs = layers.Input(IMAGE_SHAPE)\n",
    "    \n",
    "    # Encoder\n",
    "    e1, s1 = encoder_block(inputs, FILTERS)\n",
    "    e2, s2 = encoder_block(e1, FILTERS*2)\n",
    "    e3, s3 = encoder_block(e2, FILTERS*4)\n",
    "    e4, s4 = encoder_block(e3, FILTERS*8)\n",
    "    e5, s5 = encoder_block(e4, FILTERS*16)\n",
    "    e6, s6 = encoder_block(e5, FILTERS*32)\n",
    "    e7, s7 = encoder_block(e6, FILTERS*64)\n",
    "    \n",
    "    # Latent Space\n",
    "    x = layers.Flatten()(e7)\n",
    "    z_mean = layers.Dense(LATENT_DIM, name=f\"z_mean_{name.split('_')[-1]}\")(x)\n",
    "    z_log_var = layers.Dense(LATENT_DIM, name=f\"z_log_var_{name.split('_')[-1]}\")(x)\n",
    "    z = Sampling()([z_mean, z_log_var])\n",
    "    \n",
    "    # Reshape for decoder\n",
    "    x = layers.Dense(2 * 2 * FILTERS*64)(z)\n",
    "    x = layers.Reshape((2, 2, FILTERS*64))(x)\n",
    "    \n",
    "    # Decoder\n",
    "    d0 = decoder_block(x, s7, FILTERS*64)\n",
    "    d1 = decoder_block(d0, s6, FILTERS*32)\n",
    "    d2 = decoder_block(d1, s5, FILTERS*16)\n",
    "    d3 = decoder_block(d2, s4, FILTERS*8)\n",
    "    d4 = decoder_block(d3, s3, FILTERS*4)\n",
    "    d5 = decoder_block(d4, s2, FILTERS*2)\n",
    "    d6 = decoder_block(d5, s1, FILTERS)\n",
    "    \n",
    "    outputs = layers.Conv2D(3, KERNEL, activation='sigmoid', padding='same')(d6)\n",
    "    return Model(inputs, [outputs, z_mean, z_log_var], name=name)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "*===================== Discriminator =====================*\n",
    "\n",
    "\n",
    "This function constructs the discriminator in a Generative Adversarial Network (GAN). The discriminator’s role is to classify an image as real or fake by extracting hierarchical features and making multi-scale predictions.\n",
    "\n",
    "What Does This Function Do?\n",
    "\n",
    "    Extracts features from the input image using convolutional layers.\n",
    "\n",
    "    Downsamples the image through multiple layers to capture both local and global features.\n",
    "\n",
    "    Generates multiple outputs from different feature scales for better discrimination.\n",
    "\n",
    "1️⃣ Input Layer \n",
    "\n",
    "    Defines the input tensor with a shape of IMAGE_SHAPE (e.g., (256, 256, 3) for RGB images).\n",
    "\n",
    "    This means the discriminator takes an image as input.\n",
    "\n",
    "2️⃣ Feature Extraction\n",
    "\n",
    "    x = inputs initializes x as the input image.\n",
    "\n",
    "    features = [] creates a list to store intermediate feature map\n",
    "\n",
    "3️⃣ Initial Convolution\n",
    "\n",
    "    Applies a convolutional layer (Conv2D) with FILTERS (e.g., 64 filters) to extract basic edges and textures.\n",
    "\n",
    "    Uses LeakyReLU activation (alpha=0.2) instead of ReLU to allow small gradients for negative values.\n",
    "\n",
    "    Stores the feature map in features.\n",
    "\n",
    "4️⃣ Downsampling Blocks (Feature Hierarchy)\n",
    "\n",
    "    Defines filter_sizes, increasing filter count at each stage to learn complex features.\n",
    "\n",
    "    Uses a loop to pass x through multiple encoder_block layers:\n",
    "\n",
    "        Each encoder_block downsamples the feature map (reducing spatial size).\n",
    "\n",
    "        Each block doubles the number of filters to capture more detailed features.\n",
    "\n",
    "    Stores all extracted feature maps in features.\n",
    "\n",
    "5️⃣ Multi-Scale Outputs (Final Classification Layers)\n",
    "\n",
    "    The discriminator does not produce a single output; it uses multiple feature scales.\n",
    "\n",
    "    Extracts the last 4 feature maps (features[-4:]) to classify at different resolutions.\n",
    "\n",
    "    Each feature map is passed through a final Conv2D layer with 1 filter to predict real vs fake scores.\n",
    "\n",
    "    Stores the outputs in outputs.\n",
    "\n",
    "6️⃣ Return the Discriminator Model\n",
    "\n",
    "    Creates a Keras Model that takes an image as input and outputs multiple classification scores.\n",
    "\n",
    "    This helps in making fine-grained real/fake decisions.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def build_discriminator(name):\n",
    "    inputs = layers.Input(IMAGE_SHAPE)\n",
    "    \n",
    "    # Feature extraction\n",
    "    x = inputs\n",
    "    features = []\n",
    "    \n",
    "    # Initial convolution\n",
    "    x = layers.Conv2D(FILTERS, KERNEL, padding='same')(x)\n",
    "    x = layers.LeakyReLU(alpha=0.2)(x)\n",
    "    features.append(x)\n",
    "    \n",
    "    # Downsampling blocks\n",
    "    filter_sizes = [FILTERS*2, FILTERS*4, FILTERS*8, FILTERS*16, FILTERS*32, FILTERS*64]\n",
    "    for filters in filter_sizes:\n",
    "        x, _ = encoder_block(x, filters, use_norm=False)\n",
    "        features.append(x)\n",
    "    \n",
    "    # Multi-scale outputs\n",
    "    outputs = []\n",
    "    for i, feature in enumerate(features[-4:]):\n",
    "        out = layers.Conv2D(1, KERNEL, padding='same')(feature)\n",
    "        outputs.append(out)\n",
    "    \n",
    "    return Model(inputs, outputs, name=name)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*===================== Data Loading =====================*\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_images(path):\n",
    "    images = []\n",
    "    for p in pathlib.Path(path).glob('*.*'):\n",
    "        try:\n",
    "            img = cv2.imread(str(p))\n",
    "            if img is not None:\n",
    "                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
    "                img = cv2.resize(img, IMAGE_SHAPE[:2])\n",
    "                img = img.astype(np.float32) / 255.0\n",
    "                images.append(img)\n",
    "        except Exception as e:\n",
    "            print(f\"Error loading image {p}: {e}\")\n",
    "    return np.array(images)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This function is responsible for loading and balancing two different medical imaging datasets: CT scans and MRI scans. The goal is to ensure that both datasets contain the same number of images to avoid class imbalance in training.\n",
    "\n",
    "\n",
    "📌 What Does This Function Do?\n",
    "\n",
    "Loads CT scans from the given directory.\n",
    "Loads MRI scans from the given directory.\n",
    "Finds the smaller dataset (CT or MRI) and trims the larger one to match its size.\n",
    "Returns balanced datasets with the same number of images.\n",
    "\n",
    "1️⃣ Loading CT Scans:\n",
    "\n",
    "    Prints \"Loading CT scans...\" to inform the user.\n",
    "\n",
    "    Calls load_images(ct_path), a function (likely defined elsewhere) that reads images from the directory specified by ct_path.\n",
    "\n",
    "    Stores the loaded images in ct_scans.\n",
    "\n",
    "2️⃣ Loading MRI Scans\n",
    "\n",
    "    Prints \"Loading MRI scans...\" to indicate MRI loading.\n",
    "\n",
    "    Calls load_images(mri_path), which loads images from mri_path.\n",
    "\n",
    "    Stores the MRI images in mri_scans.\n",
    "\n",
    "3️⃣ Balancing the Datasets\n",
    "\n",
    "    Computes the minimum length between the two datasets.\n",
    "\n",
    "    Ensures that the dataset with more images is trimmed to match the smaller one.\n",
    "\n",
    "    Computes the minimum length between the two datasets.\n",
    "\n",
    "    Ensures that the dataset with more images is trimmed to match the smaller one.\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "    \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def load_and_balance_datasets(ct_path, mri_path):\n",
    "    print(\"Loading CT scans...\")\n",
    "    ct_scans = load_images(ct_path)\n",
    "    print(\"Loading MRI scans...\")\n",
    "    mri_scans = load_images(mri_path)\n",
    "    \n",
    "    min_length = min(len(ct_scans), len(mri_scans))\n",
    "    ct_scans = ct_scans[:min_length]\n",
    "    mri_scans = mri_scans[:min_length]\n",
    "    \n",
    "    print(f\"Balanced datasets to {min_length} images each\")\n",
    "    return ct_scans, mri_scans"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*Training Setup - Detailed Explanation*\n",
    "\n",
    "This block of code sets up the models and optimizers required for training a CycleGAN for CT ↔ MRI image translation. Let’s break it down step by step.\n",
    "\n",
    "📌 What Does This Code Do?\n",
    "    Builds the generator models (CT → MRI and MRI → CT).\n",
    "\n",
    "    Builds the discriminator models for CT and MRI.\n",
    "\n",
    "    Creates optimizers for training the generators and discriminators.\n",
    "\n",
    "    Initializes model variables (trainable parameters for both generators and discriminators).\n",
    "\n",
    "    Builds optimizers using the trainable variables.\n",
    "\n",
    "1️⃣ Building the Generator Models\n",
    "\n",
    "    build_generator(name): This function (explained earlier) builds a U-Net-based Variational Autoencoder (VAE) generator.\n",
    "\n",
    "    g_ct_mri: The generator that converts CT scans → MRI images.\n",
    "\n",
    "    g_mri_ct: The generator that converts MRI images → CT scans\n",
    "\n",
    "2️⃣ Building the Discriminator Models\n",
    "\n",
    "    build_discriminator(name): This function (explained earlier) builds the discriminators to differentiate real and fake images.\n",
    "\n",
    "    d_ct: The discriminator that distinguishes real CT scans from fake ones.\n",
    "\n",
    "    d_mri: The discriminator that distinguishes real MRI scans from fake ones.\n",
    "\n",
    "\n",
    "3️⃣ Creating Optimizers\n",
    "\n",
    "    g_opt: Optimizer for training both generators.\n",
    "\n",
    "    d_opt: Optimizer for training both discriminators.\n",
    "\n",
    "    Uses RMSprop as the optimizer.\n",
    "\n",
    "        The learning rate (LEARNING_RATE) controls the step size for updates.\n",
    "\n",
    "        Weight decay (WEIGHT_DECAY) prevents overfitting by penalizing large weights.\n",
    "\n",
    "4️⃣ Initializing Model Variables\n",
    "\n",
    "    g_vars: Stores all trainable variables (weights & biases) of both generators.\n",
    "    d_vars: Stores all trainable variables of both discriminators.\n",
    "\n",
    "    📝 Why store trainable variables separately?\n",
    "\n",
    "        Since generators and discriminators have separate losses, they need to be updated separately.\n",
    "\n",
    "5️⃣ Building Optimizers with Model Variables\n",
    "\n",
    "    g_opt.build(g_vars): Tells TensorFlow that g_opt will optimize generator variables.\n",
    "\n",
    "    d_opt.build(d_vars): Tells TensorFlow that d_opt will optimize discriminator variables.\n",
    "\n",
    "    📝 Why explicitly build the optimizers?\n",
    "\n",
    "    In Eager Execution mode, TensorFlow automatically tracks variables.\n",
    "    \n",
    "    However, explicitly calling build() can help with performance optimization.\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From d:\\VS CODE\\Web Dev\\Projects\\Image2Image\\image\\lib\\site-packages\\keras\\src\\backend.py:1398: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead.\n",
      "\n",
      "WARNING:tensorflow:From d:\\VS CODE\\Web Dev\\Projects\\Image2Image\\image\\lib\\site-packages\\keras\\src\\layers\\pooling\\max_pooling2d.py:161: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n",
      "\n"
     ]
    },
    {
     "ename": "NameError",
     "evalue": "name 'Sampling' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[12], line 3\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;66;03m# ===================== Training Setup =====================\u001b[39;00m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;66;03m# Build models\u001b[39;00m\n\u001b[1;32m----> 3\u001b[0m g_ct_mri \u001b[38;5;241m=\u001b[39m \u001b[43mbuild_generator\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mCT_to_MRI\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m      4\u001b[0m g_mri_ct \u001b[38;5;241m=\u001b[39m build_generator(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMRI_to_CT\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m      5\u001b[0m d_ct \u001b[38;5;241m=\u001b[39m build_discriminator(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mD_CT\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
      "Cell \u001b[1;32mIn[7], line 17\u001b[0m, in \u001b[0;36mbuild_generator\u001b[1;34m(name)\u001b[0m\n\u001b[0;32m     15\u001b[0m z_mean \u001b[38;5;241m=\u001b[39m layers\u001b[38;5;241m.\u001b[39mDense(LATENT_DIM, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mz_mean_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m'\u001b[39m)[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)(x)\n\u001b[0;32m     16\u001b[0m z_log_var \u001b[38;5;241m=\u001b[39m layers\u001b[38;5;241m.\u001b[39mDense(LATENT_DIM, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mz_log_var_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m'\u001b[39m)[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)(x)\n\u001b[1;32m---> 17\u001b[0m z \u001b[38;5;241m=\u001b[39m \u001b[43mSampling\u001b[49m()([z_mean, z_log_var])\n\u001b[0;32m     19\u001b[0m \u001b[38;5;66;03m# Reshape for decoder\u001b[39;00m\n\u001b[0;32m     20\u001b[0m x \u001b[38;5;241m=\u001b[39m layers\u001b[38;5;241m.\u001b[39mDense(\u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m FILTERS\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m64\u001b[39m)(z)\n",
      "\u001b[1;31mNameError\u001b[0m: name 'Sampling' is not defined"
     ]
    }
   ],
   "source": [
    "# ===================== Training Setup =====================\n",
    "# Build models\n",
    "g_ct_mri = build_generator('CT_to_MRI')\n",
    "g_mri_ct = build_generator('MRI_to_CT')\n",
    "d_ct = build_discriminator('D_CT')\n",
    "d_mri = build_discriminator('D_MRI')\n",
    "\n",
    "# Create optimizers\n",
    "g_opt = tf.keras.optimizers.RMSprop(learning_rate=LEARNING_RATE, weight_decay=WEIGHT_DECAY)\n",
    "d_opt = tf.keras.optimizers.RMSprop(learning_rate=LEARNING_RATE, weight_decay=WEIGHT_DECAY)\n",
    "\n",
    "# Initialize model variables\n",
    "g_vars = g_ct_mri.trainable_variables + g_mri_ct.trainable_variables\n",
    "d_vars = d_ct.trainable_variables + d_mri.trainable_variables\n",
    "\n",
    "# Build optimizers\n",
    "g_opt.build(g_vars)\n",
    "d_opt.build(d_vars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*Explanation of train_step Function in CycleGAN with Variational Autoencoder (VAE)*\n",
    "\n",
    "This function performs one training step for the CycleGAN with VAE-style latent representations. It does the following:\n",
    "\n",
    "Generates fake images using the generators.\n",
    "\n",
    "Evaluates the fake and real images using the discriminators.\n",
    "\n",
    "Computes the loss functions for both generators and discriminators.\n",
    "\n",
    "Computes gradients and updates the model parameters.\n",
    "\n",
    "1️⃣ Forward Pass - Generate Fake Images\n",
    "\n",
    "    g_ct_mri(real_ct): Translates CT → Fake MRI and produces:\n",
    "        \n",
    "        fake_mri: The generated MRI image.\n",
    "        z_mean_fwd, z_log_var_fwd: Latent variables (from the Variational Autoencoder).\n",
    "    g_mri_ct(real_mri): Translates MRI → Fake CT with similar outputs.\n",
    "\n",
    "    📝 Why store z_mean and z_log_var?\n",
    "\n",
    "    These come from the VAE latent space and are used for the KL divergence loss.\n",
    "\n",
    "2️⃣ Compute Discriminator Outputs\n",
    "\n",
    "    d_ct(real_ct): Discriminator’s prediction for real CT images.\n",
    "\n",
    "    d_ct(fake_ct): Discriminator’s prediction for fake CT images.\n",
    "\n",
    "    d_mri(real_mri): Discriminator’s prediction for real MRI images.\n",
    "\n",
    "    d_mri(fake_mri): Discriminator’s prediction for fake MRI images.\n",
    "\n",
    "    📝 Goal of Discriminators?\n",
    "\n",
    "\n",
    "        Real images should be classified close to 1.\n",
    "\n",
    "        Fake images should be classified close to 0.\n",
    "\n",
    "3️⃣ Compute Discriminator Losses\n",
    "\n",
    "    Uses Least Squares GAN (LSGAN) loss:\n",
    "\n",
    "        For real images: (real - 1)^2 → Encourages real images to be classified as 1.\n",
    "\n",
    "        For fake images: fake^2 → Encourages fake images to be classified as 0.\n",
    "\n",
    "    sum([...]): If there are multiple output layers in the discriminator, we sum their losses.\n",
    "\n",
    "    📝 Why LSGAN loss?\n",
    "\n",
    "        Helps stabilize training compared to standard GAN loss.\n",
    "\n",
    "\n",
    "4️⃣ Cycle Consistency Loss (CycleGAN Component)\n",
    "\n",
    "    cycled_ct = g_mri_ct(fake_mri): The fake MRI is translated back to CT.\n",
    "\n",
    "    cycled_mri = g_ct_mri(fake_ct): The fake CT is translated back to MRI.\n",
    "\n",
    "    📝 Why cycle consistency?\n",
    "\n",
    "        The network should learn round-trip consistency:\n",
    "\n",
    "        CT → Fake MRI → CT (should look like original CT)\n",
    "\n",
    "        MRI → Fake CT → MRI (should look like original MRI)\n",
    "\n",
    "5️⃣ KL Divergence Loss (VAE Component)\n",
    "\n",
    "    This is the KL divergence loss from VAE:\n",
    "\n",
    "    Encourages the latent space to follow a Gaussian distribution.\n",
    "\n",
    "    Prevents mode collapse.\n",
    "\n",
    "    📝 Why add KL divergence loss?\n",
    "\n",
    "        Regularizes the latent space so the generator produces diverse outputs.\n",
    "\n",
    "6️⃣ Compute Generator Losses\n",
    "\n",
    "    The generator wants fake images to be classified as real (1), so we use:\n",
    "\n",
    "    (fake - 1)^2 → Fake images should be close to 1.\n",
    "\n",
    "    Cycle consistency loss: L1 loss (|original - reconstructed|).\n",
    "\n",
    "    Encourages faithful reconstructions.\n",
    "\n",
    "\n",
    "    Final generator loss combines:\n",
    "\n",
    "        Adversarial loss (GAN loss).\n",
    "\n",
    "        Cycle consistency loss (weighted by 10 for stronger enforcement).\n",
    "\n",
    "        KL divergence loss (weighted by 0.5).\n",
    "\n",
    "        \n",
    "7️⃣ Compute Total Discriminator Loss\n",
    "\n",
    "Adds both discriminator losses.\n",
    "\n",
    "8️⃣ Compute Gradients & Update Model Parameters\n",
    "\n",
    "    Computes gradients of discriminator loss (d_total_loss).\n",
    "\n",
    "    Updates discriminator weights (d_vars).\n",
    "\n",
    "    Computes gradients of generator loss (g_total_loss).\n",
    "\n",
    "    Updates generator weights (g_vars).\n",
    "\n",
    "📝 Why use tf.GradientTape(persistent=True)?\n",
    "\n",
    "    We need gradients twice (once for discriminators, once for generators).\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "@tf.function\n",
    "def train_step(real_ct, real_mri):\n",
    "    with tf.GradientTape(persistent=True) as tape:\n",
    "        # Forward passes\n",
    "        fake_mri, z_mean_fwd, z_log_var_fwd = g_ct_mri(real_ct, training=True)\n",
    "        fake_ct, z_mean_bwd, z_log_var_bwd = g_mri_ct(real_mri, training=True)\n",
    "        \n",
    "        # Discriminator outputs\n",
    "        d_real_ct = d_ct(real_ct, training=True)\n",
    "        d_fake_ct = d_ct(fake_ct, training=True)\n",
    "        d_real_mri = d_mri(real_mri, training=True)\n",
    "        d_fake_mri = d_mri(fake_mri, training=True)\n",
    "        \n",
    "        # Discriminator losses\n",
    "        d_ct_loss = sum([tf.reduce_mean((real - 1)**2) + tf.reduce_mean(fake**2) \n",
    "                        for real, fake in zip(d_real_ct, d_fake_ct)])\n",
    "        d_mri_loss = sum([tf.reduce_mean((real - 1)**2) + tf.reduce_mean(fake**2) \n",
    "                         for real, fake in zip(d_real_mri, d_fake_mri)])\n",
    "        \n",
    "        # Cycle consistency\n",
    "        cycled_ct, _, _ = g_mri_ct(fake_mri, training=True)\n",
    "        cycled_mri, _, _ = g_ct_mri(fake_ct, training=True)\n",
    "        \n",
    "        # KL Divergence\n",
    "        kl_fwd = -0.5 * tf.reduce_mean(1 + z_log_var_fwd - tf.square(z_mean_fwd) - tf.exp(z_log_var_fwd))\n",
    "        kl_bwd = -0.5 * tf.reduce_mean(1 + z_log_var_bwd - tf.square(z_mean_bwd) - tf.exp(z_log_var_bwd))\n",
    "        \n",
    "        # Generator losses\n",
    "        g_adv_loss = sum([tf.reduce_mean((fake - 1)**2) for fake in d_fake_mri + d_fake_ct])\n",
    "        g_cycle_loss = (tf.reduce_mean(tf.abs(real_ct - cycled_ct)) + \n",
    "                       tf.reduce_mean(tf.abs(real_mri - cycled_mri)))\n",
    "        g_total_loss = g_adv_loss + 10 * g_cycle_loss + 0.5 * (kl_fwd + kl_bwd)\n",
    "        \n",
    "        # Total discriminator loss\n",
    "        d_total_loss = d_ct_loss + d_mri_loss\n",
    "    \n",
    "    # Update discriminators\n",
    "    d_grads = tape.gradient(d_total_loss, d_vars)\n",
    "    d_opt.apply_gradients(zip(d_grads, d_vars))\n",
    "    \n",
    "    # Update generators\n",
    "    g_grads = tape.gradient(g_total_loss, g_vars)\n",
    "    g_opt.apply_gradients(zip(g_grads, g_vars))\n",
    "    \n",
    "    return {\n",
    "        'd_ct': d_ct_loss,\n",
    "        'd_mri': d_mri_loss,\n",
    "        'g_total': g_total_loss,\n",
    "        'fake_mri': fake_mri,\n",
    "        'fake_ct': fake_ct\n",
    "    }"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This code defines the main training loop for a CycleGAN-based model that translates between CT and MRI images. It consists of data preparation, training iteration, progress tracking, and model saving. Below is a step-by-step breakdown:\n",
    "\n",
    "\n",
    "1. Create Progress Directory\n",
    "\n",
    "The script creates a directory named progress/ inside Kaggle's working directory.\n",
    "\n",
    "This directory will store progress images showing how well the model is learning over time.\n",
    "\n",
    "2. Load and Balance the Datasets\n",
    "\n",
    "Calls load_and_balance_datasets() to load CT and MRI images from the dataset folders.\n",
    "\n",
    "Ensures both datasets have the same number of images by truncating the larger set.\n",
    "\n",
    "3. Create TensorFlow Dataset for Training\n",
    "\n",
    "Creates a TensorFlow dataset from the loaded images.\n",
    "\n",
    "Shuffles the dataset to introduce randomness and prevent overfitting.\n",
    "\n",
    "Batches the dataset to process multiple images in parallel during training.\n",
    "\n",
    "\n",
    "4. Training Loop\n",
    "\n",
    "Starts iterating over epochs (EPOCHS defines the total number of passes over the dataset).\n",
    "\n",
    "Iterates through mini-batches of CT and MRI scans using train_dataset.\n",
    "\n",
    "5. Train the Model (Forward & Backward Pass)\n",
    "\n",
    "Calls train_step(ct_batch, mri_batch), which:\n",
    "\n",
    "    Generates fake MRI from CT (G_CT→MRI) and fake CT from MRI (G_MRI→CT).\n",
    "\n",
    "    Passes both real and fake images through the discriminators (D_CT and D_MRI).\n",
    "\n",
    "    Computes adversarial losses, cycle consistency loss, and KL divergence.\n",
    "\n",
    "    Updates the discriminators (D_CT, D_MRI) and generators (G_CT→MRI, G_MRI→CT).\n",
    "\n",
    "Stores the loss values (d_ct_loss, d_mri_loss, g_total_loss) and the generated images.\n",
    "\n",
    "6. Print Losses for Monitoring\n",
    "\n",
    "Every 10 batches, prints:\n",
    "\n",
    "D_CT: Discriminator loss for CT.\n",
    "\n",
    "D_MRI: Discriminator loss for MRI.\n",
    "\n",
    "G: Total generator loss.\n",
    "\n",
    "This helps monitor model performance during training.\n",
    "\n",
    "7. Save Sample Images for Progress Tracking\n",
    "\n",
    "Every 100 batches, saves progress images to progress/.\n",
    "\n",
    "Displays real CT & MRI images alongside their fake counterparts generated by the model.\n",
    "\n",
    "Helps visually track improvements in image quality over time.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'os' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[14], line 4\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;66;03m# ===================== Main Training Loop =====================\u001b[39;00m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;66;03m# Create progress directory if it doesn't exist\u001b[39;00m\n\u001b[0;32m      3\u001b[0m progress_dir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/kaggle/working/progress\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[43mos\u001b[49m\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mexists(progress_dir):\n\u001b[0;32m      5\u001b[0m     os\u001b[38;5;241m.\u001b[39mmakedirs(progress_dir)\n\u001b[0;32m      7\u001b[0m \u001b[38;5;66;03m# Load and prepare data\u001b[39;00m\n",
      "\u001b[1;31mNameError\u001b[0m: name 'os' is not defined"
     ]
    }
   ],
   "source": [
    "\n",
    "# ===================== Main Training Loop =====================\n",
    "# Create progress directory if it doesn't exist\n",
    "progress_dir = '/kaggle/working/progress'\n",
    "if not os.path.exists(progress_dir):\n",
    "    os.makedirs(progress_dir)\n",
    "\n",
    "# Load and prepare data\n",
    "print(\"Loading datasets...\")\n",
    "ct_scans, mri_scans = load_and_balance_datasets('/kaggle/input/ct-to-mri-cgan/Dataset/images/trainA', \n",
    "                                               '/kaggle/input/ct-to-mri-cgan/Dataset/images/trainB')\n",
    "\n",
    "# Create TensorFlow dataset\n",
    "train_dataset = tf.data.Dataset.from_tensor_slices((ct_scans, mri_scans))\n",
    "train_dataset = train_dataset.shuffle(buffer_size=len(ct_scans)).batch(BATCH_SIZE)\n",
    "# Training loop\n",
    "print(\"Starting training...\")\n",
    "for epoch in range(EPOCHS):\n",
    "    for batch_idx, (ct_batch, mri_batch) in enumerate(train_dataset):\n",
    "        results = train_step(ct_batch, mri_batch)\n",
    "        \n",
    "        if batch_idx % 10 == 0:\n",
    "            print(f\"Epoch {epoch}, Batch {batch_idx}: \"\n",
    "                  f\"D_CT={float(results['d_ct']):.4f}, \"\n",
    "                  f\"D_MRI={float(results['d_mri']):.4f}, \"\n",
    "                  f\"G={float(results['g_total']):.4f}\")\n",
    "            \n",
    "            # Save sample images every 100 batches\n",
    "            if batch_idx % 100 == 0:\n",
    "                fig, axes = plt.subplots(2, 2, figsize=(10, 10))\n",
    "                \n",
    "                # Real CT and Fake MRI\n",
    "                axes[0,0].imshow(ct_batch[0].numpy())\n",
    "                axes[0,0].set_title(\"Real CT\")\n",
    "                axes[0,0].axis('off')\n",
    "                \n",
    "                axes[0,1].imshow(results['fake_mri'][0].numpy())\n",
    "                axes[0,1].set_title(\"Fake MRI\")\n",
    "                axes[0,1].axis('off')\n",
    "                \n",
    "                # Real MRI and Fake CT\n",
    "                axes[1,0].imshow(mri_batch[0].numpy())\n",
    "                axes[1,0].set_title(\"Real MRI\")\n",
    "                axes[1,0].axis('off')\n",
    "                \n",
    "                axes[1,1].imshow(results['fake_ct'][0].numpy())\n",
    "                axes[1,1].set_title(\"Fake CT\")\n",
    "                axes[1,1].axis('off')\n",
    "                \n",
    "                plt.tight_layout()\n",
    "                plt.savefig(f'progress/epoch_{epoch}_batch_{batch_idx}.png')\n",
    "                plt.close()\n",
    "    \n",
    "    # Save models after each epoch\n",
    "    save_models(g_ct_mri, g_mri_ct, epoch)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def translate_image(model_path, image_path, output_path, mode='ct_to_mri'):\n",
    "    \"\"\"\n",
    "    Translate a single image using the trained model\n",
    "    \n",
    "    Parameters:\n",
    "    model_path: Path to the saved model\n",
    "    image_path: Path to the input image\n",
    "    output_path: Path to save the translated image\n",
    "    mode: 'ct_to_mri' or 'mri_to_ct'\n",
    "    \"\"\"\n",
    "    # Load model\n",
    "    print(f\"Loading model from {model_path}\")\n",
    "    model = tf.keras.models.load_model(model_path, \n",
    "                                     custom_objects={'Sampling': Sampling})\n",
    "    \n",
    "    # Load and preprocess image\n",
    "    input_image = load_and_preprocess_image(image_path)\n",
    "    \n",
    "    # Generate translation\n",
    "    print(\"Generating translation...\")\n",
    "    translated_image, _, _ = model(input_image, training=False)\n",
    "    \n",
    "    # Convert to numpy and denormalize\n",
    "    translated_image = translated_image.numpy()[0] * 255\n",
    "    translated_image = translated_image.astype(np.uint8)\n",
    "    \n",
    "    # Save the result\n",
    "    print(f\"Saving translated image to {output_path}\")\n",
    "    plt.figure(figsize=(10, 5))\n",
    "    \n",
    "    plt.subplot(1, 2, 1)\n",
    "    plt.title(\"Input Image\")\n",
    "    plt.imshow(input_image[0])\n",
    "    plt.axis('off')\n",
    "    \n",
    "    plt.subplot(1, 2, 2)\n",
    "    plt.title(\"Translated Image\")\n",
    "    plt.imshow(translated_image)\n",
    "    plt.axis('off')\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig(output_path)\n",
    "    plt.close()\n",
    "    \n",
    "    return translated_image\n",
    "'''\n",
    "# Example usage of the translation function\n",
    "def example_translation():\n",
    "    \"\"\"Example of how to use the translation function\"\"\"\n",
    "    # Paths\n",
    "    ct_to_mri_model = 'saved_models/ct_to_mri_epoch_1000'\n",
    "    mri_to_ct_model = 'saved_models/mri_to_ct_epoch_1000'\n",
    "    \n",
    "    # CT to MRI translation\n",
    "    input_ct = 'path/to/your/ct_image.jpg'\n",
    "    output_mri = 'results/translated_mri.png'\n",
    "    translated_mri = translate_image(ct_to_mri_model, input_ct, output_mri, \n",
    "                                   mode='ct_to_mri')\n",
    "    \n",
    "    # MRI to CT translation\n",
    "    input_mri = 'path/to/your/mri_image.jpg'\n",
    "    output_ct = 'results/translated_ct.png'\n",
    "    translated_ct = translate_image(mri_to_ct_model, input_mri, output_ct, \n",
    "                                  mode='mri_to_ct')'''"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "*Complete code in Single Block*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow.keras import layers, Model\n",
    "import numpy as np\n",
    "import cv2\n",
    "import pathlib\n",
    "import matplotlib.pyplot as plt\n",
    "import tensorflow_probability as tfp\n",
    "\n",
    "tfd = tfp.distributions\n",
    "\n",
    "# ===================== Configuration =====================\n",
    "IMAGE_SHAPE = (256, 256, 3)\n",
    "LATENT_DIM = 256\n",
    "FILTERS = 16\n",
    "KERNEL = 3\n",
    "LEARNING_RATE = 0.0001\n",
    "WEIGHT_DECAY = 6e-8\n",
    "BATCH_SIZE = 1\n",
    "EPOCHS = 10\n",
    "\n",
    "# ===================== Architecture Components =====================\n",
    "class Sampling(layers.Layer):\n",
    "    def call(self, inputs):\n",
    "        z_mean, z_log_var = inputs\n",
    "        batch = tf.shape(z_mean)[0]\n",
    "        dim = tf.shape(z_mean)[1]\n",
    "        epsilon = tf.random.normal(shape=(batch, dim))\n",
    "        return z_mean + tf.exp(0.5 * z_log_var) * epsilon\n",
    "\n",
    "def residual_block(inputs, filters, use_norm=True):\n",
    "    x = layers.Conv2D(filters, KERNEL, padding='same')(inputs)\n",
    "    x = layers.LeakyReLU(alpha=0.2)(x)\n",
    "    if use_norm:\n",
    "        x = layers.GroupNormalization(groups=1)(x)\n",
    "    x = layers.Conv2D(filters, KERNEL, padding='same')(x)\n",
    "    x = layers.LeakyReLU(alpha=0.2)(x)\n",
    "    if use_norm:\n",
    "        x = layers.GroupNormalization(groups=1)(x)\n",
    "    shortcut = layers.Conv2D(filters, 1, padding='same')(inputs)\n",
    "    return layers.maximum([x, shortcut])\n",
    "\n",
    "def encoder_block(inputs, filters, use_norm=True):\n",
    "    x = residual_block(inputs, filters, use_norm)\n",
    "    skip = x\n",
    "    x = layers.MaxPooling2D()(x)\n",
    "    return x, skip\n",
    "\n",
    "def decoder_block(inputs, skip, filters, use_norm=True):\n",
    "    x = layers.Conv2DTranspose(filters, KERNEL, strides=2, padding='same')(inputs)\n",
    "    x = layers.maximum([x, skip])\n",
    "    x = residual_block(x, filters, use_norm)\n",
    "    return x\n",
    "\n",
    "# ===================== Generator =====================\n",
    "def build_generator(name):\n",
    "    inputs = layers.Input(IMAGE_SHAPE)\n",
    "    \n",
    "    # Encoder\n",
    "    e1, s1 = encoder_block(inputs, FILTERS)\n",
    "    e2, s2 = encoder_block(e1, FILTERS*2)\n",
    "    e3, s3 = encoder_block(e2, FILTERS*4)\n",
    "    e4, s4 = encoder_block(e3, FILTERS*8)\n",
    "    e5, s5 = encoder_block(e4, FILTERS*16)\n",
    "    e6, s6 = encoder_block(e5, FILTERS*32)\n",
    "    e7, s7 = encoder_block(e6, FILTERS*64)\n",
    "    \n",
    "    # Latent Space\n",
    "    x = layers.Flatten()(e7)\n",
    "    z_mean = layers.Dense(LATENT_DIM, name=f\"z_mean_{name.split('_')[-1]}\")(x)\n",
    "    z_log_var = layers.Dense(LATENT_DIM, name=f\"z_log_var_{name.split('_')[-1]}\")(x)\n",
    "    z = Sampling()([z_mean, z_log_var])\n",
    "    \n",
    "    # Reshape for decoder\n",
    "    x = layers.Dense(2 * 2 * FILTERS*64)(z)\n",
    "    x = layers.Reshape((2, 2, FILTERS*64))(x)\n",
    "    \n",
    "    # Decoder\n",
    "    d0 = decoder_block(x, s7, FILTERS*64)\n",
    "    d1 = decoder_block(d0, s6, FILTERS*32)\n",
    "    d2 = decoder_block(d1, s5, FILTERS*16)\n",
    "    d3 = decoder_block(d2, s4, FILTERS*8)\n",
    "    d4 = decoder_block(d3, s3, FILTERS*4)\n",
    "    d5 = decoder_block(d4, s2, FILTERS*2)\n",
    "    d6 = decoder_block(d5, s1, FILTERS)\n",
    "    \n",
    "    outputs = layers.Conv2D(3, KERNEL, activation='sigmoid', padding='same')(d6)\n",
    "    return Model(inputs, [outputs, z_mean, z_log_var], name=name)\n",
    "\n",
    "# ===================== Discriminator =====================\n",
    "def build_discriminator(name):\n",
    "    inputs = layers.Input(IMAGE_SHAPE)\n",
    "    \n",
    "    # Feature extraction\n",
    "    x = inputs\n",
    "    features = []\n",
    "    \n",
    "    # Initial convolution\n",
    "    x = layers.Conv2D(FILTERS, KERNEL, padding='same')(x)\n",
    "    x = layers.LeakyReLU(alpha=0.2)(x)\n",
    "    features.append(x)\n",
    "    \n",
    "    # Downsampling blocks\n",
    "    filter_sizes = [FILTERS*2, FILTERS*4, FILTERS*8, FILTERS*16, FILTERS*32, FILTERS*64]\n",
    "    for filters in filter_sizes:\n",
    "        x, _ = encoder_block(x, filters, use_norm=False)\n",
    "        features.append(x)\n",
    "    \n",
    "    # Multi-scale outputs\n",
    "    outputs = []\n",
    "    for i, feature in enumerate(features[-4:]):\n",
    "        out = layers.Conv2D(1, KERNEL, padding='same')(feature)\n",
    "        outputs.append(out)\n",
    "    \n",
    "    return Model(inputs, outputs, name=name)\n",
    "\n",
    "# ===================== Data Loading =====================\n",
    "def load_images(path):\n",
    "    images = []\n",
    "    for p in pathlib.Path(path).glob('*.*'):\n",
    "        try:\n",
    "            img = cv2.imread(str(p))\n",
    "            if img is not None:\n",
    "                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
    "                img = cv2.resize(img, IMAGE_SHAPE[:2])\n",
    "                img = img.astype(np.float32) / 255.0\n",
    "                images.append(img)\n",
    "        except Exception as e:\n",
    "            print(f\"Error loading image {p}: {e}\")\n",
    "    return np.array(images)\n",
    "\n",
    "def load_and_balance_datasets(ct_path, mri_path):\n",
    "    print(\"Loading CT scans...\")\n",
    "    ct_scans = load_images(ct_path)\n",
    "    print(\"Loading MRI scans...\")\n",
    "    mri_scans = load_images(mri_path)\n",
    "    \n",
    "    min_length = min(len(ct_scans), len(mri_scans))\n",
    "    ct_scans = ct_scans[:min_length]\n",
    "    mri_scans = mri_scans[:min_length]\n",
    "    \n",
    "    print(f\"Balanced datasets to {min_length} images each\")\n",
    "    return ct_scans, mri_scans\n",
    "\n",
    "# ===================== Training Setup =====================\n",
    "# Build models\n",
    "g_ct_mri = build_generator('CT_to_MRI')\n",
    "g_mri_ct = build_generator('MRI_to_CT')\n",
    "d_ct = build_discriminator('D_CT')\n",
    "d_mri = build_discriminator('D_MRI')\n",
    "\n",
    "# Create optimizers\n",
    "g_opt = tf.keras.optimizers.RMSprop(learning_rate=LEARNING_RATE, weight_decay=WEIGHT_DECAY)\n",
    "d_opt = tf.keras.optimizers.RMSprop(learning_rate=LEARNING_RATE, weight_decay=WEIGHT_DECAY)\n",
    "\n",
    "# Initialize model variables\n",
    "g_vars = g_ct_mri.trainable_variables + g_mri_ct.trainable_variables\n",
    "d_vars = d_ct.trainable_variables + d_mri.trainable_variables\n",
    "\n",
    "# Build optimizers\n",
    "g_opt.build(g_vars)\n",
    "d_opt.build(d_vars)\n",
    "\n",
    "# ===================== Training Function =====================\n",
    "@tf.function\n",
    "def train_step(real_ct, real_mri):\n",
    "    with tf.GradientTape(persistent=True) as tape:\n",
    "        # Forward passes\n",
    "        fake_mri, z_mean_fwd, z_log_var_fwd = g_ct_mri(real_ct, training=True)\n",
    "        fake_ct, z_mean_bwd, z_log_var_bwd = g_mri_ct(real_mri, training=True)\n",
    "        \n",
    "        # Discriminator outputs\n",
    "        d_real_ct = d_ct(real_ct, training=True)\n",
    "        d_fake_ct = d_ct(fake_ct, training=True)\n",
    "        d_real_mri = d_mri(real_mri, training=True)\n",
    "        d_fake_mri = d_mri(fake_mri, training=True)\n",
    "        \n",
    "        # Discriminator losses\n",
    "        d_ct_loss = sum([tf.reduce_mean((real - 1)**2) + tf.reduce_mean(fake**2) \n",
    "                        for real, fake in zip(d_real_ct, d_fake_ct)])\n",
    "        d_mri_loss = sum([tf.reduce_mean((real - 1)**2) + tf.reduce_mean(fake**2) \n",
    "                         for real, fake in zip(d_real_mri, d_fake_mri)])\n",
    "        \n",
    "        # Cycle consistency\n",
    "        cycled_ct, _, _ = g_mri_ct(fake_mri, training=True)\n",
    "        cycled_mri, _, _ = g_ct_mri(fake_ct, training=True)\n",
    "        \n",
    "        # KL Divergence\n",
    "        kl_fwd = -0.5 * tf.reduce_mean(1 + z_log_var_fwd - tf.square(z_mean_fwd) - tf.exp(z_log_var_fwd))\n",
    "        kl_bwd = -0.5 * tf.reduce_mean(1 + z_log_var_bwd - tf.square(z_mean_bwd) - tf.exp(z_log_var_bwd))\n",
    "        \n",
    "        # Generator losses\n",
    "        g_adv_loss = sum([tf.reduce_mean((fake - 1)**2) for fake in d_fake_mri + d_fake_ct])\n",
    "        g_cycle_loss = (tf.reduce_mean(tf.abs(real_ct - cycled_ct)) + \n",
    "                       tf.reduce_mean(tf.abs(real_mri - cycled_mri)))\n",
    "        g_total_loss = g_adv_loss + 10 * g_cycle_loss + 0.5 * (kl_fwd + kl_bwd)\n",
    "        \n",
    "        # Total discriminator loss\n",
    "        d_total_loss = d_ct_loss + d_mri_loss\n",
    "    \n",
    "    # Update discriminators\n",
    "    d_grads = tape.gradient(d_total_loss, d_vars)\n",
    "    d_opt.apply_gradients(zip(d_grads, d_vars))\n",
    "    \n",
    "    # Update generators\n",
    "    g_grads = tape.gradient(g_total_loss, g_vars)\n",
    "    g_opt.apply_gradients(zip(g_grads, g_vars))\n",
    "    \n",
    "    return {\n",
    "        'd_ct': d_ct_loss,\n",
    "        'd_mri': d_mri_loss,\n",
    "        'g_total': g_total_loss,\n",
    "        'fake_mri': fake_mri,\n",
    "        'fake_ct': fake_ct\n",
    "    }\n",
    "\n",
    "\n",
    "\n",
    "import os\n",
    "\n",
    "def save_models(g_ct_mri, g_mri_ct, epoch, model_dir='/kaggle/working/saved_models'):\n",
    "    \"\"\"Save models in HDF5 format after each epoch\"\"\"\n",
    "    if not os.path.exists(model_dir):\n",
    "        os.makedirs(model_dir)\n",
    "    \n",
    "    # Save as .h5 files\n",
    "    ct_path = os.path.join(model_dir, f'ct_to_mri_epoch_{epoch}.h5')\n",
    "    mri_path = os.path.join(model_dir, f'mri_to_ct_epoch_{epoch}.h5')\n",
    "    \n",
    "    g_ct_mri.save(ct_path)\n",
    "    g_mri_ct.save(mri_path)\n",
    "    print(f\"Models saved: {ct_path} and {mri_path}\")\n",
    "\n",
    "\n",
    "# ===================== Main Training Loop =====================\n",
    "# Create progress directory if it doesn't exist\n",
    "progress_dir = '/kaggle/working/progress'\n",
    "if not os.path.exists(progress_dir):\n",
    "    os.makedirs(progress_dir)\n",
    "\n",
    "# Load and prepare data\n",
    "print(\"Loading datasets...\")\n",
    "ct_scans, mri_scans = load_and_balance_datasets('/kaggle/input/ct-to-mri-cgan/Dataset/images/trainA', \n",
    "                                               '/kaggle/input/ct-to-mri-cgan/Dataset/images/trainB')\n",
    "\n",
    "# Create TensorFlow dataset\n",
    "train_dataset = tf.data.Dataset.from_tensor_slices((ct_scans, mri_scans))\n",
    "train_dataset = train_dataset.shuffle(buffer_size=len(ct_scans)).batch(BATCH_SIZE)\n",
    "# Training loop\n",
    "print(\"Starting training...\")\n",
    "for epoch in range(EPOCHS):\n",
    "    for batch_idx, (ct_batch, mri_batch) in enumerate(train_dataset):\n",
    "        results = train_step(ct_batch, mri_batch)\n",
    "        \n",
    "        if batch_idx % 10 == 0:\n",
    "            print(f\"Epoch {epoch}, Batch {batch_idx}: \"\n",
    "                  f\"D_CT={float(results['d_ct']):.4f}, \"\n",
    "                  f\"D_MRI={float(results['d_mri']):.4f}, \"\n",
    "                  f\"G={float(results['g_total']):.4f}\")\n",
    "            \n",
    "            # Save sample images every 100 batches\n",
    "            if batch_idx % 100 == 0:\n",
    "                fig, axes = plt.subplots(2, 2, figsize=(10, 10))\n",
    "                \n",
    "                # Real CT and Fake MRI\n",
    "                axes[0,0].imshow(ct_batch[0].numpy())\n",
    "                axes[0,0].set_title(\"Real CT\")\n",
    "                axes[0,0].axis('off')\n",
    "                \n",
    "                axes[0,1].imshow(results['fake_mri'][0].numpy())\n",
    "                axes[0,1].set_title(\"Fake MRI\")\n",
    "                axes[0,1].axis('off')\n",
    "                \n",
    "                # Real MRI and Fake CT\n",
    "                axes[1,0].imshow(mri_batch[0].numpy())\n",
    "                axes[1,0].set_title(\"Real MRI\")\n",
    "                axes[1,0].axis('off')\n",
    "                \n",
    "                axes[1,1].imshow(results['fake_ct'][0].numpy())\n",
    "                axes[1,1].set_title(\"Fake CT\")\n",
    "                axes[1,1].axis('off')\n",
    "                \n",
    "                plt.tight_layout()\n",
    "                plt.savefig(f'progress/epoch_{epoch}_batch_{batch_idx}.png')\n",
    "                plt.close()\n",
    "    \n",
    "    # Save models after each epoch\n",
    "    save_models(g_ct_mri, g_mri_ct, epoch)\n",
    "\n",
    "def load_and_preprocess_image(image_path):\n",
    "    \"\"\"Load and preprocess a single image for inference\"\"\"\n",
    "    # Read image\n",
    "    img = cv2.imread(image_path)\n",
    "    if img is None:\n",
    "        raise ValueError(f\"Could not load image from {image_path}\")\n",
    "    \n",
    "    # Convert BGR to RGB\n",
    "    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
    "    \n",
    "    # Resize to model's input size\n",
    "    img = cv2.resize(img, (256, 256))\n",
    "    \n",
    "    # Normalize to [0, 1]\n",
    "    img = img.astype(np.float32) / 255.0\n",
    "    \n",
    "    # Add batch dimension\n",
    "    img = np.expand_dims(img, axis=0)\n",
    "    \n",
    "    return img\n",
    "\n",
    "def translate_image(model_path, image_path, output_path, mode='ct_to_mri'):\n",
    "    \"\"\"\n",
    "    Translate a single image using the trained model\n",
    "    \n",
    "    Parameters:\n",
    "    model_path: Path to the saved model\n",
    "    image_path: Path to the input image\n",
    "    output_path: Path to save the translated image\n",
    "    mode: 'ct_to_mri' or 'mri_to_ct'\n",
    "    \"\"\"\n",
    "    # Load model\n",
    "    print(f\"Loading model from {model_path}\")\n",
    "    model = tf.keras.models.load_model(model_path, \n",
    "                                     custom_objects={'Sampling': Sampling})\n",
    "    \n",
    "    # Load and preprocess image\n",
    "    input_image = load_and_preprocess_image(image_path)\n",
    "    \n",
    "    # Generate translation\n",
    "    print(\"Generating translation...\")\n",
    "    translated_image, _, _ = model(input_image, training=False)\n",
    "    \n",
    "    # Convert to numpy and denormalize\n",
    "    translated_image = translated_image.numpy()[0] * 255\n",
    "    translated_image = translated_image.astype(np.uint8)\n",
    "    \n",
    "    # Save the result\n",
    "    print(f\"Saving translated image to {output_path}\")\n",
    "    plt.figure(figsize=(10, 5))\n",
    "    \n",
    "    plt.subplot(1, 2, 1)\n",
    "    plt.title(\"Input Image\")\n",
    "    plt.imshow(input_image[0])\n",
    "    plt.axis('off')\n",
    "    \n",
    "    plt.subplot(1, 2, 2)\n",
    "    plt.title(\"Translated Image\")\n",
    "    plt.imshow(translated_image)\n",
    "    plt.axis('off')\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig(output_path)\n",
    "    plt.close()\n",
    "    \n",
    "    return translated_image\n",
    "'''\n",
    "# Example usage of the translation function\n",
    "def example_translation():\n",
    "    \"\"\"Example of how to use the translation function\"\"\"\n",
    "    # Paths\n",
    "    ct_to_mri_model = 'saved_models/ct_to_mri_epoch_1000'\n",
    "    mri_to_ct_model = 'saved_models/mri_to_ct_epoch_1000'\n",
    "    \n",
    "    # CT to MRI translation\n",
    "    input_ct = 'path/to/your/ct_image.jpg'\n",
    "    output_mri = 'results/translated_mri.png'\n",
    "    translated_mri = translate_image(ct_to_mri_model, input_ct, output_mri, \n",
    "                                   mode='ct_to_mri')\n",
    "    \n",
    "    # MRI to CT translation\n",
    "    input_mri = 'path/to/your/mri_image.jpg'\n",
    "    output_ct = 'results/translated_ct.png'\n",
    "    translated_ct = translate_image(mri_to_ct_model, input_mri, output_ct, \n",
    "                                  mode='mri_to_ct')'''"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "image",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}