File size: 16,265 Bytes
93f4205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "pip install faiss-cpu numpy pypdf sentence-transformers\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "LqTTG2cy0L1A",
        "outputId": "c8be3a59-e763-47a7-f1de-4a010dae06f4"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: faiss-cpu in /usr/local/lib/python3.11/dist-packages (1.10.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (1.26.4)\n",
            "Requirement already satisfied: pypdf in /usr/local/lib/python3.11/dist-packages (5.3.0)\n",
            "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.11/dist-packages (3.4.1)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from faiss-cpu) (24.2)\n",
            "Requirement already satisfied: transformers<5.0.0,>=4.41.0 in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (4.48.3)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (4.67.1)\n",
            "Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (2.5.1+cu124)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (1.6.1)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (1.13.1)\n",
            "Requirement already satisfied: huggingface-hub>=0.20.0 in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (0.28.1)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.11/dist-packages (from sentence-transformers) (11.1.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (3.17.0)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (2024.10.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (6.0.2)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (2.32.3)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.20.0->sentence-transformers) (4.12.2)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (3.4.2)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.5)\n",
            "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.127)\n",
            "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.127)\n",
            "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.127)\n",
            "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (9.1.0.70)\n",
            "Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.5.8)\n",
            "Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (11.2.1.3)\n",
            "Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (10.3.5.147)\n",
            "Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (11.6.1.9)\n",
            "Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.3.1.170)\n",
            "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (2.21.5)\n",
            "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.127)\n",
            "Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (12.4.127)\n",
            "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.0)\n",
            "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.11.0->sentence-transformers) (1.13.1)\n",
            "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=1.11.0->sentence-transformers) (1.3.0)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers<5.0.0,>=4.41.0->sentence-transformers) (2024.11.6)\n",
            "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers<5.0.0,>=4.41.0->sentence-transformers) (0.21.0)\n",
            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.11/dist-packages (from transformers<5.0.0,>=4.41.0->sentence-transformers) (0.5.2)\n",
            "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->sentence-transformers) (1.4.2)\n",
            "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->sentence-transformers) (3.5.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=1.11.0->sentence-transformers) (3.0.2)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (3.4.1)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (3.10)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (2.3.0)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.20.0->sentence-transformers) (2025.1.31)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "V2T0CkLD0Cnh",
        "outputId": "176443e5-f99f-4d65-c6c5-e1ca43699006"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Extracting text from PDF...\n",
            "Extracted text (first 500 chars): Machine Learning For Absolute\n",
            "Beginners\n",
            " \n",
            " \n",
            " \n",
            " \n",
            "Oliver Theobald\n",
            " \n",
            " \n",
            " \n",
            " \n",
            " \n",
            "Second Edition\n",
            "Copyright © 2017 by Oliver Theobald\n",
            "All rights reserved. No part of this publication may be reproduced,\n",
            "distributed, or transmitted in any form or by any means, including\n",
            "photocopying, recording, or other electronic or mechanical\n",
            "methods, without the prior written permission of the publisher,\n",
            "except in the case of brief quotations embodied in critical reviews\n",
            "and certain other non-commercial uses permitted b\n",
            "Chunking text...\n",
            "Total chunks created: 53\n",
            "Generating embeddings...\n",
            "Embedding 1/53 generated, Shape: (1, 384)\n",
            "Embedding 2/53 generated, Shape: (1, 384)\n",
            "Embedding 3/53 generated, Shape: (1, 384)\n",
            "Embedding 4/53 generated, Shape: (1, 384)\n",
            "Embedding 5/53 generated, Shape: (1, 384)\n",
            "Embedding 6/53 generated, Shape: (1, 384)\n",
            "Embedding 7/53 generated, Shape: (1, 384)\n",
            "Embedding 8/53 generated, Shape: (1, 384)\n",
            "Embedding 9/53 generated, Shape: (1, 384)\n",
            "Embedding 10/53 generated, Shape: (1, 384)\n",
            "Embedding 11/53 generated, Shape: (1, 384)\n",
            "Embedding 12/53 generated, Shape: (1, 384)\n",
            "Embedding 13/53 generated, Shape: (1, 384)\n",
            "Embedding 14/53 generated, Shape: (1, 384)\n",
            "Embedding 15/53 generated, Shape: (1, 384)\n",
            "Embedding 16/53 generated, Shape: (1, 384)\n",
            "Embedding 17/53 generated, Shape: (1, 384)\n",
            "Embedding 18/53 generated, Shape: (1, 384)\n",
            "Embedding 19/53 generated, Shape: (1, 384)\n",
            "Embedding 20/53 generated, Shape: (1, 384)\n",
            "Embedding 21/53 generated, Shape: (1, 384)\n",
            "Embedding 22/53 generated, Shape: (1, 384)\n",
            "Embedding 23/53 generated, Shape: (1, 384)\n",
            "Embedding 24/53 generated, Shape: (1, 384)\n",
            "Embedding 25/53 generated, Shape: (1, 384)\n",
            "Embedding 26/53 generated, Shape: (1, 384)\n",
            "Embedding 27/53 generated, Shape: (1, 384)\n",
            "Embedding 28/53 generated, Shape: (1, 384)\n",
            "Embedding 29/53 generated, Shape: (1, 384)\n",
            "Embedding 30/53 generated, Shape: (1, 384)\n",
            "Embedding 31/53 generated, Shape: (1, 384)\n",
            "Embedding 32/53 generated, Shape: (1, 384)\n",
            "Embedding 33/53 generated, Shape: (1, 384)\n",
            "Embedding 34/53 generated, Shape: (1, 384)\n",
            "Embedding 35/53 generated, Shape: (1, 384)\n",
            "Embedding 36/53 generated, Shape: (1, 384)\n",
            "Embedding 37/53 generated, Shape: (1, 384)\n",
            "Embedding 38/53 generated, Shape: (1, 384)\n",
            "Embedding 39/53 generated, Shape: (1, 384)\n",
            "Embedding 40/53 generated, Shape: (1, 384)\n",
            "Embedding 41/53 generated, Shape: (1, 384)\n",
            "Embedding 42/53 generated, Shape: (1, 384)\n",
            "Embedding 43/53 generated, Shape: (1, 384)\n",
            "Embedding 44/53 generated, Shape: (1, 384)\n",
            "Embedding 45/53 generated, Shape: (1, 384)\n",
            "Embedding 46/53 generated, Shape: (1, 384)\n",
            "Embedding 47/53 generated, Shape: (1, 384)\n",
            "Embedding 48/53 generated, Shape: (1, 384)\n",
            "Embedding 49/53 generated, Shape: (1, 384)\n",
            "Embedding 50/53 generated, Shape: (1, 384)\n",
            "Embedding 51/53 generated, Shape: (1, 384)\n",
            "Embedding 52/53 generated, Shape: (1, 384)\n",
            "Embedding 53/53 generated, Shape: (1, 384)\n",
            "Storing in FAISS...\n",
            "FAISS database saved as 'vector_database.faiss'\n"
          ]
        }
      ],
      "source": [
        "import os\n",
        "import faiss\n",
        "import numpy as np\n",
        "import pypdf  # Using pypdf for text extraction\n",
        "from sentence_transformers import SentenceTransformer\n",
        "\n",
        "# Load an open-source embedding model from Hugging Face\n",
        "model = SentenceTransformer(\"sentence-transformers/all-MiniLM-L6-v2\")\n",
        "\n",
        "# Load text from PDF using pypdf\n",
        "def load_pdf(pdf_path):\n",
        "    text = \"\"\n",
        "    with open(pdf_path, \"rb\") as file:\n",
        "        reader = pypdf.PdfReader(file)\n",
        "        for page in reader.pages:\n",
        "            text += page.extract_text() + \"\\n\" if page.extract_text() else \"\"  # Handle empty pages\n",
        "    return text.strip() if text.strip() else None  # Ensure non-empty text\n",
        "\n",
        "# Split text into chunks\n",
        "def chunk_text(text, chunk_size=500):\n",
        "    words = text.split()\n",
        "    chunks = [\" \".join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]\n",
        "    return [c for c in chunks if c.strip()]  # Remove empty chunks\n",
        "\n",
        "# Generate embeddings using Hugging Face model\n",
        "def get_embedding(text):\n",
        "    return model.encode(text, convert_to_numpy=True).reshape(1, -1)  # Ensure 2D shape\n",
        "\n",
        "# Store embeddings in FAISS\n",
        "def store_in_faiss(embeddings):\n",
        "    if len(embeddings) == 0:\n",
        "        raise ValueError(\"No embeddings found! Check your text extraction and chunking.\")\n",
        "\n",
        "    embeddings = np.vstack(embeddings)  # Stack into 2D array\n",
        "    dim = embeddings.shape[1]\n",
        "    index = faiss.IndexFlatL2(dim)\n",
        "    index.add(embeddings)\n",
        "    faiss.write_index(index, \"vector_database.faiss\")\n",
        "\n",
        "def main():\n",
        "    pdf_path = \"/content/[Oliver_Theobald]_Machine_Learning_for_Absolute_Be.pdf\"\n",
        "\n",
        "    print(\"Extracting text from PDF...\")\n",
        "    text = load_pdf(pdf_path)\n",
        "    if text is None:\n",
        "        raise ValueError(\"No text extracted from PDF. Check if it's a scanned document!\")\n",
        "\n",
        "    print(\"Extracted text (first 500 chars):\", text[:500])\n",
        "\n",
        "    print(\"Chunking text...\")\n",
        "    chunks = chunk_text(text)\n",
        "    print(f\"Total chunks created: {len(chunks)}\")\n",
        "    if not chunks:\n",
        "        raise ValueError(\"No valid text chunks found!\")\n",
        "\n",
        "    print(\"Generating embeddings...\")\n",
        "    embeddings = []\n",
        "    for i, chunk in enumerate(chunks):\n",
        "        emb = get_embedding(chunk)\n",
        "        print(f\"Embedding {i+1}/{len(chunks)} generated, Shape: {emb.shape}\")\n",
        "        embeddings.append(emb)\n",
        "\n",
        "    if not embeddings:\n",
        "        raise ValueError(\"No embeddings were generated! Check the text chunks.\")\n",
        "\n",
        "    embeddings = np.vstack(embeddings)\n",
        "\n",
        "    print(\"Storing in FAISS...\")\n",
        "    store_in_faiss(embeddings)\n",
        "\n",
        "    print(\"FAISS database saved as 'vector_database.faiss'\")\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    main()"
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "4FyvMg221DIg"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}