Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st
|
5 |
+
from groq import Groq
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
# Initialize FAISS and Model
|
9 |
+
VECTOR_DB_PATH = "vector_database.faiss"
|
10 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
11 |
+
|
12 |
+
# Initialize embedding model
|
13 |
+
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
|
14 |
+
|
15 |
+
# Load FAISS Index
|
16 |
+
def load_faiss():
|
17 |
+
if not os.path.exists(VECTOR_DB_PATH):
|
18 |
+
st.error("Vector database not found! Ensure FAISS index is created.")
|
19 |
+
return None
|
20 |
+
index = faiss.read_index(VECTOR_DB_PATH)
|
21 |
+
return index
|
22 |
+
|
23 |
+
faiss_index = load_faiss()
|
24 |
+
|
25 |
+
# GROQ API setup
|
26 |
+
GROQ_API_KEY = "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" # Set in Hugging Face secrets
|
27 |
+
client = Groq(api_key=GROQ_API_KEY)
|
28 |
+
|
29 |
+
MODEL_ID = "deepseek-r1-distill-llama-70b"
|
30 |
+
|
31 |
+
# Function to get nearest neighbor from FAISS
|
32 |
+
def search_faiss(query, top_k=3):
|
33 |
+
query_embedding = embedding_model.encode(query, convert_to_numpy=True).reshape(1, -1)
|
34 |
+
distances, indices = faiss_index.search(query_embedding, top_k)
|
35 |
+
return indices
|
36 |
+
|
37 |
+
# Function to call DeepSeek model from GROQ
|
38 |
+
def generate_response(context, query):
|
39 |
+
prompt = f"Use the following retrieved context to answer the question:\n\nContext:\n{context}\n\nQuestion: {query}\nAnswer:"
|
40 |
+
response = client.chat.completions.create(
|
41 |
+
model=MODEL_ID,
|
42 |
+
messages=[{"role": "user", "content": prompt}],
|
43 |
+
)
|
44 |
+
return response.choices[0].message.content
|
45 |
+
|
46 |
+
# Streamlit UI
|
47 |
+
st.title("💡 AI Chat with FAISS & GROQ")
|
48 |
+
st.write("Ask a question and get responses based on stored knowledge!")
|
49 |
+
|
50 |
+
query = st.text_input("🔍 Enter your query:")
|
51 |
+
if query:
|
52 |
+
if faiss_index is None:
|
53 |
+
st.error("FAISS database not loaded. Please check deployment.")
|
54 |
+
else:
|
55 |
+
indices = search_faiss(query)
|
56 |
+
retrieved_context = "\n".join([f"Chunk {i}: Retrieved text" for i in indices[0]])
|
57 |
+
response = generate_response(retrieved_context, query)
|
58 |
+
st.write("### 🤖 AI Response:")
|
59 |
+
st.write(response)
|