Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
|
7 |
+
model = AutoModel.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
|
8 |
+
|
9 |
+
def get_embedding(text):
|
10 |
+
if len(text) > 250:
|
11 |
+
return "❌ Error: Input exceeds 250 character limit."
|
12 |
+
|
13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
# Use [CLS] token embedding (or mean pooling)
|
17 |
+
embedding = outputs.last_hidden_state[:, 0, :].squeeze().tolist()
|
18 |
+
|
19 |
+
# Show only first 10 dimensions for readability
|
20 |
+
return f"✅ Embedding (first 10 values): {embedding[:10]}..."
|
21 |
+
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=get_embedding,
|
24 |
+
inputs=gr.Textbox(label="Enter a sentence (max 250 characters)", max_lines=3, placeholder="Type your sentence here...", lines=2),
|
25 |
+
outputs="text",
|
26 |
+
title="Qwen3 Embedding Demo",
|
27 |
+
description="Generates sentence embeddings using Qwen/Qwen3-Embedding-0.6B. Input must be 250 characters or fewer."
|
28 |
+
)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
demo.launch()
|