import gradio as gr from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Embedding-0.6B") model = AutoModel.from_pretrained("Qwen/Qwen3-Embedding-0.6B") def get_embedding(text): inputs = tokenizer(text, return_tensors="pt", truncation=True) with torch.no_grad(): outputs = model(**inputs) return outputs.last_hidden_state[:, 0, :] # [CLS] token def compare_sentences(reference, comparisons): if len(reference) > 250: return "āŒ Error: Reference exceeds 250 character limit." comparison_list = [s.strip() for s in comparisons.strip().split('\n') if s.strip()] if not comparison_list: return "āŒ Error: No comparison sentences provided." if any(len(s) > 250 for s in comparison_list): return "āŒ Error: One or more comparison sentences exceed 250 characters." ref_emb = get_embedding(reference) comp_embs = torch.cat([get_embedding(s) for s in comparison_list], dim=0) similarities = F.cosine_similarity(ref_emb, comp_embs).tolist() results = "\n".join([f"Similarity with: \"{s}\"\n→ {round(score, 4)}" for s, score in zip(comparison_list, similarities)]) return results demo = gr.Interface( fn=compare_sentences, inputs=[ gr.Textbox(label="Reference Sentence (max 250 characters)", lines=2, placeholder="Type the reference sentence here..."), gr.Textbox(label="Comparison Sentences (one per line, each max 250 characters)", lines=8, placeholder="Type comparison sentences here, one per line..."), ], outputs="text", title="Qwen3 Embedding Comparison Demo", description="Enter a reference sentence and multiple comparison sentences (one per line). The model computes the cosine similarity between the reference and each comparison." ) if __name__ == "__main__": demo.launch()