Spaces:
Sleeping
Sleeping
Commit
·
fc2fdc7
1
Parent(s):
0429e22
latest
Browse files- app.py +7 -11
- last_epoch_ckpt/diffusion_pytorch_model.safetensors +1 -1
- latest_val.png +0 -3
- prior/pipeline_kandinsky_prior.py +24 -5
- train.py +1 -94
- train_requirements.txt +0 -642
app.py
CHANGED
@@ -58,7 +58,7 @@ def generate_gpu(in_im_embs, prompt='the scene'):
|
|
58 |
num_inference_steps=50,
|
59 |
image_embeds=positive_image_embeds,
|
60 |
negative_image_embeds=negative_image_embeds,
|
61 |
-
guidance_scale=
|
62 |
).images[0]
|
63 |
cond = (
|
64 |
model.prior_pipe.image_processor(images, return_tensors="pt")
|
@@ -101,17 +101,17 @@ def sample_embs(prompt_embeds):
|
|
101 |
@spaces.GPU()
|
102 |
def get_user_emb(embs, ys):
|
103 |
positives = [e for e, ys in zip(embs, ys) if ys == 1]
|
104 |
-
|
105 |
-
if len(embs) == 0:
|
106 |
positives = torch.zeros_like(im_emb)[None]
|
107 |
else:
|
|
|
108 |
positives = torch.stack(embs, 1)
|
109 |
|
110 |
negs = [e for e, ys in zip(embs, ys) if ys == 0]
|
111 |
-
|
112 |
-
if len(negative_embs) == 0:
|
113 |
negatives = torch.zeros_like(im_emb)[None]
|
114 |
else:
|
|
|
115 |
negatives = torch.stack(negative_embs, 1)
|
116 |
|
117 |
image_embeds = torch.stack([sample_embs(negatives), sample_embs(positives)])
|
@@ -186,12 +186,8 @@ def pluck_img(user_id):
|
|
186 |
time.sleep(.1)
|
187 |
# TODO optimize this lol
|
188 |
|
|
|
189 |
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == user_id for i in not_rated_rows.iterrows()]]
|
190 |
-
if len(unrated_from_user) > 0:
|
191 |
-
print(unrated_from_user)
|
192 |
-
# NOTE the way I've setup pandas here is so gdm horrible. TODO overhaul
|
193 |
-
img = unrated_from_user['paths'].to_list()[-1]
|
194 |
-
return img
|
195 |
|
196 |
best_sim = -10000000
|
197 |
for i in not_rated_rows.iterrows():
|
@@ -390,7 +386,7 @@ Explore the latent space using binary feedback.
|
|
390 |
[b1, b2, b3, b4, b5, b6, img, calibrate_prompts, user_id, ]
|
391 |
)
|
392 |
with gr.Row():
|
393 |
-
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several images and then roam.
|
394 |
|
395 |
<br><br>
|
396 |
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
|
|
|
58 |
num_inference_steps=50,
|
59 |
image_embeds=positive_image_embeds,
|
60 |
negative_image_embeds=negative_image_embeds,
|
61 |
+
guidance_scale=15,
|
62 |
).images[0]
|
63 |
cond = (
|
64 |
model.prior_pipe.image_processor(images, return_tensors="pt")
|
|
|
101 |
@spaces.GPU()
|
102 |
def get_user_emb(embs, ys):
|
103 |
positives = [e for e, ys in zip(embs, ys) if ys == 1]
|
104 |
+
if len(positives) == 0:
|
|
|
105 |
positives = torch.zeros_like(im_emb)[None]
|
106 |
else:
|
107 |
+
embs = random.sample(positives, min(4, len(positives))) + positives[-4:]
|
108 |
positives = torch.stack(embs, 1)
|
109 |
|
110 |
negs = [e for e, ys in zip(embs, ys) if ys == 0]
|
111 |
+
if len(negs) == 0:
|
|
|
112 |
negatives = torch.zeros_like(im_emb)[None]
|
113 |
else:
|
114 |
+
negative_embs = random.sample(negs, min(4, len(negs))) + negs[-4:]
|
115 |
negatives = torch.stack(negative_embs, 1)
|
116 |
|
117 |
image_embeds = torch.stack([sample_embs(negatives), sample_embs(positives)])
|
|
|
186 |
time.sleep(.1)
|
187 |
# TODO optimize this lol
|
188 |
|
189 |
+
# NOTE could opt for only showing their own or prioritizing their own media.
|
190 |
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == user_id for i in not_rated_rows.iterrows()]]
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
best_sim = -10000000
|
193 |
for i in not_rated_rows.iterrows():
|
|
|
386 |
[b1, b2, b3, b4, b5, b6, img, calibrate_prompts, user_id, ]
|
387 |
)
|
388 |
with gr.Row():
|
389 |
+
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several images and then roam. When your media is generating, you may encounter others'.</ div><br><br><br>
|
390 |
|
391 |
<br><br>
|
392 |
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
|
last_epoch_ckpt/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 136790920
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d65a902c101345526b244420a5e6f495a947909db28015840afa9bacd557936b
|
3 |
size 136790920
|
latest_val.png
DELETED
Git LFS Details
|
prior/pipeline_kandinsky_prior.py
CHANGED
@@ -401,6 +401,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
401 |
def __call__(
|
402 |
self,
|
403 |
prompt: Union[str, List[str]],
|
|
|
404 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
405 |
num_images_per_prompt: int = 1,
|
406 |
num_inference_steps: int = 25,
|
@@ -471,11 +472,11 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
471 |
prompt_embeds = torch.cat(full_seq, 0)
|
472 |
full_prompt.append(prompt_embeds)
|
473 |
prompt_embeds = torch.stack(full_prompt)
|
474 |
-
if prompt_embeds.shape[1] <
|
475 |
-
prompt_embeds = torch.nn.functional.pad(prompt_embeds, [0, 0, 0,
|
476 |
-
assert prompt_embeds.shape[1] ==
|
477 |
|
478 |
-
prompt_embeds = prompt_embeds.to('cuda')
|
479 |
|
480 |
hidden_states = torch.randn(
|
481 |
(batch_size, prompt_embeds.shape[-1]),
|
@@ -495,7 +496,25 @@ class KandinskyPriorPipeline(DiffusionPipeline):
|
|
495 |
|
496 |
# if negative prompt has been defined, we retrieve split the image embedding into two
|
497 |
if negative_prompt is None:
|
498 |
-
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
if (
|
501 |
hasattr(self, "final_offload_hook")
|
|
|
401 |
def __call__(
|
402 |
self,
|
403 |
prompt: Union[str, List[str]],
|
404 |
+
k,
|
405 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
406 |
num_images_per_prompt: int = 1,
|
407 |
num_inference_steps: int = 25,
|
|
|
472 |
prompt_embeds = torch.cat(full_seq, 0)
|
473 |
full_prompt.append(prompt_embeds)
|
474 |
prompt_embeds = torch.stack(full_prompt)
|
475 |
+
if prompt_embeds.shape[1] < k:
|
476 |
+
prompt_embeds = torch.nn.functional.pad(prompt_embeds, [0, 0, 0, k-prompt_embeds.shape[1]])
|
477 |
+
assert prompt_embeds.shape[1] == k, f"The model is set to take `k`` cond image embeds but is shape {prompt_embeds.shape}"
|
478 |
|
479 |
+
prompt_embeds = prompt_embeds.to('cuda')
|
480 |
|
481 |
hidden_states = torch.randn(
|
482 |
(batch_size, prompt_embeds.shape[-1]),
|
|
|
496 |
|
497 |
# if negative prompt has been defined, we retrieve split the image embedding into two
|
498 |
if negative_prompt is None:
|
499 |
+
# zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
|
500 |
+
|
501 |
+
# using the same hidden states or different hidden states?
|
502 |
+
|
503 |
+
hidden_states = torch.randn(
|
504 |
+
(batch_size, prompt_embeds.shape[-1]),
|
505 |
+
device=prompt_embeds.device,
|
506 |
+
dtype=prompt_embeds.dtype,
|
507 |
+
generator=generator,
|
508 |
+
)
|
509 |
+
|
510 |
+
latents = self.prior(
|
511 |
+
hidden_states,
|
512 |
+
proj_embedding=torch.zeros_like(prompt_embeds),
|
513 |
+
encoder_hidden_states=torch.zeros_like(prompt_embeds),
|
514 |
+
attention_mask=text_mask,
|
515 |
+
).predicted_image_embedding
|
516 |
+
|
517 |
+
zero_embeds = latents
|
518 |
|
519 |
if (
|
520 |
hasattr(self, "final_offload_hook")
|
train.py
CHANGED
@@ -1,94 +1 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
########################################
|
4 |
-
# python -m train
|
5 |
-
###########################################
|
6 |
-
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import logging
|
10 |
-
import numpy as np
|
11 |
-
from tqdm import tqdm
|
12 |
-
from PIL import Image
|
13 |
-
|
14 |
-
from data import get_dataloader
|
15 |
-
from model import get_model_and_tokenizer, get_optimizer
|
16 |
-
import config
|
17 |
-
|
18 |
-
logging.basicConfig(level=logging.INFO)
|
19 |
-
|
20 |
-
def get_loss(model, input, target, tokenizer):
|
21 |
-
with torch.no_grad():
|
22 |
-
assert len(input.shape) == 5 # [batch, s, c, w, h]
|
23 |
-
cuts = config.number_k_clip_embed
|
24 |
-
assert input.shape[0] * input.shape[1] % cuts == 0, 'batch size * `k` preferred embeds must be divisible by cuts'
|
25 |
-
input = input.view(cuts//8, -1, 3, target.shape[-2], target.shape[-1])
|
26 |
-
full_seq = []
|
27 |
-
for b in input:
|
28 |
-
input = tokenizer(b)['image_embeds'] # in our case, tokenizer is a clip embedding model
|
29 |
-
full_seq.append(input)
|
30 |
-
input = torch.stack(full_seq)
|
31 |
-
|
32 |
-
target = tokenizer(target)['image_embeds']
|
33 |
-
|
34 |
-
input = input.view(target.shape[0], -1, target.shape[-1])
|
35 |
-
assert len(input.shape) == 3 # [batch, sequence, inner]
|
36 |
-
|
37 |
-
with torch.cuda.amp.autocast(enabled=False, ):
|
38 |
-
input = input.to(torch.float32)
|
39 |
-
latent = torch.randn(input.shape[0], input.shape[-1], device=input.device)
|
40 |
-
output = model(latent, input).predicted_image_embedding
|
41 |
-
|
42 |
-
target = target.to(torch.float32)
|
43 |
-
mse_loss = torch.nn.functional.mse_loss(target, output).mean()
|
44 |
-
|
45 |
-
assert len(target.shape) == 2 and len(output.shape) == 2
|
46 |
-
cosine_loss = 1 - torch.nn.functional.cosine_similarity(output, target).mean()
|
47 |
-
loss = mse_loss + .2 * cosine_loss
|
48 |
-
|
49 |
-
logging.info(f'MSE: {mse_loss.item()}, Cosine: {cosine_loss.item()}, Weighted Total: {loss.item()}')
|
50 |
-
# TODO wandb
|
51 |
-
|
52 |
-
return loss
|
53 |
-
|
54 |
-
def main():
|
55 |
-
np.random.seed(config.seed)
|
56 |
-
torch.manual_seed(config.seed)
|
57 |
-
|
58 |
-
model, tokenizer = get_model_and_tokenizer(config.model_path, config.device, config.dtype)
|
59 |
-
optimizer = get_optimizer(list(model.prior.parameters()), config.lr)
|
60 |
-
dataloader = get_dataloader(config.data_path, config.batch_size, config.num_workers,
|
61 |
-
model.prior_pipe.image_processor)
|
62 |
-
|
63 |
-
for epoch in range(config.epochs):
|
64 |
-
for ind, batch in tqdm(enumerate(iter(dataloader))):
|
65 |
-
if batch is None:
|
66 |
-
continue
|
67 |
-
|
68 |
-
input, target = batch
|
69 |
-
input = input.to(config.device)
|
70 |
-
target = target.to(config.device)
|
71 |
-
|
72 |
-
if ind % 50 == 0:
|
73 |
-
with torch.cuda.amp.autocast(enabled=True, dtype=config.dtype): # NOTE using autocast because our training model is also our val model, so don't want to set to full half precision.
|
74 |
-
examples = ['../generative_recommender/Blue_Tigers_space/1o.png',
|
75 |
-
'../generative_recommender/Blue_Tigers_space/2o.png',
|
76 |
-
'../generative_recommender/Blue_Tigers_space/3o.png',
|
77 |
-
'../generative_recommender/Blue_Tigers_space/4o.png',
|
78 |
-
'../generative_recommender/Blue_Tigers_space/5o.png',
|
79 |
-
'../generative_recommender/Blue_Tigers_space/6o.png',
|
80 |
-
'../generative_recommender/Blue_Tigers_space/7o.png',
|
81 |
-
'../generative_recommender/Blue_Tigers_space/8o.png',]
|
82 |
-
model.do_validation([[Image.open('../'+j) for j in examples]])
|
83 |
-
|
84 |
-
loss = get_loss(model, input, target, tokenizer)
|
85 |
-
loss.backward()
|
86 |
-
optimizer.step()
|
87 |
-
optimizer.zero_grad()
|
88 |
-
|
89 |
-
if ind % 100 == 0:
|
90 |
-
# TODO add loading from path
|
91 |
-
model.prior.save_pretrained(f'{config.save_path}/last_epoch_ckpt', from_pt=True)
|
92 |
-
|
93 |
-
if __name__ == '__main__':
|
94 |
-
main()
|
|
|
1 |
+
### See prefererence prior github for training code here: https://github.com/rynmurdock/preference-prior
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_requirements.txt
DELETED
@@ -1,642 +0,0 @@
|
|
1 |
-
absl-py==1.4.0
|
2 |
-
accelerate==0.26.1
|
3 |
-
addict==2.4.0
|
4 |
-
aeiou==0.0.20
|
5 |
-
aenum==3.1.15
|
6 |
-
aiobotocore==2.13.0
|
7 |
-
aiofiles==23.1.0
|
8 |
-
aiohttp==3.9.5
|
9 |
-
aioitertools==0.11.0
|
10 |
-
aiosignal==1.3.1
|
11 |
-
alias-free-torch==0.0.6
|
12 |
-
aliyun-python-sdk-core==2.15.1
|
13 |
-
aliyun-python-sdk-kms==2.16.3
|
14 |
-
altair==4.2.2
|
15 |
-
anaconda-anon-usage @ file:///croot/anaconda-anon-usage_1710965072196/work
|
16 |
-
anaconda-client==1.11.2
|
17 |
-
anaconda-cloud-auth @ file:///croot/anaconda-cloud-auth_1712794769769/work
|
18 |
-
anaconda-navigator @ file:///croot/anaconda-navigator_1712087978399/work
|
19 |
-
anaconda-project @ file:///opt/conda/conda-bld/anaconda-project_1660339890420/work
|
20 |
-
annotated-types @ file:///croot/annotated-types_1709542908624/work
|
21 |
-
antlr4-python3-runtime==4.9.3
|
22 |
-
anyio==4.3.0
|
23 |
-
appdirs==1.4.4
|
24 |
-
apptools==5.2.1
|
25 |
-
APScheduler==3.10.4
|
26 |
-
argbind==0.3.9
|
27 |
-
argcomplete==3.1.1
|
28 |
-
asgiref==3.7.2
|
29 |
-
asttokens==2.2.1
|
30 |
-
astunparse==1.6.3
|
31 |
-
async-timeout==4.0.2
|
32 |
-
atproto==0.0.10
|
33 |
-
attrs==25.1.0
|
34 |
-
audioread==3.0.1
|
35 |
-
auraloss==0.4.0
|
36 |
-
av==10.0.0
|
37 |
-
awscli==1.33.2
|
38 |
-
backcall==0.2.0
|
39 |
-
backports.functools-lru-cache @ file:///tmp/build/80754af9/backports.functools_lru_cache_1618170165463/work
|
40 |
-
backports.tempfile @ file:///home/linux1/recipes/ci/backports.tempfile_1610991236607/work
|
41 |
-
backports.weakref==1.0.post1
|
42 |
-
bases==0.2.1
|
43 |
-
basicsr==1.4.2
|
44 |
-
beautifulsoup4==4.12.2
|
45 |
-
bitsandbytes==0.43.1
|
46 |
-
black==24.10.0
|
47 |
-
bleach==6.1.0
|
48 |
-
blendmodes==2022
|
49 |
-
blinker==1.6.2
|
50 |
-
blis==0.7.9
|
51 |
-
blobfile==2.1.1
|
52 |
-
blosc2==2.5.1
|
53 |
-
bokeh==3.4.1
|
54 |
-
boltons==23.0.0
|
55 |
-
boto==2.49.0
|
56 |
-
boto3==1.34.120
|
57 |
-
botocore==1.34.120
|
58 |
-
Bottleneck @ file:///croot/bottleneck_1707864210935/work
|
59 |
-
braceexpand==0.1.7
|
60 |
-
Brotli @ file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work
|
61 |
-
brotlipy==0.7.0
|
62 |
-
cached-property==1.5.2
|
63 |
-
cachetools==5.3.3
|
64 |
-
Cartopy==0.21.1
|
65 |
-
catalogue==2.0.8
|
66 |
-
certifi==2025.1.31
|
67 |
-
cffi==1.15.1
|
68 |
-
cfgv==3.3.1
|
69 |
-
chardet @ file:///home/builder/ci_310/chardet_1640804867535/work
|
70 |
-
charset-normalizer==3.1.0
|
71 |
-
chex==0.1.81
|
72 |
-
clean-fid==0.1.35
|
73 |
-
click==8.1.3
|
74 |
-
clip @ git+https://github.com/openai/CLIP.git@a9b1bf5920416aaeaec965c25dd9e8f98c864f16
|
75 |
-
clip-anytorch==2.6.0
|
76 |
-
cloudpickle==2.2.1
|
77 |
-
clyent==1.2.2
|
78 |
-
cmake==3.26.4
|
79 |
-
colorama==0.4.6
|
80 |
-
colorcet==3.1.0
|
81 |
-
colored==2.2.4
|
82 |
-
coloredlogs==15.0.1
|
83 |
-
comm==0.1.4
|
84 |
-
commonmark==0.9.1
|
85 |
-
comtypes==1.2.0
|
86 |
-
conda @ file:///croot/conda_1696257509808/work
|
87 |
-
conda-build @ file:///croot/conda-build_1701720841368/work
|
88 |
-
conda-content-trust @ file:///tmp/abs_5952f1c8-355c-4855-ad2e-538535021ba5h26t22e5/croots/recipe/conda-content-trust_1658126371814/work
|
89 |
-
conda-libmamba-solver @ file:///croot/conda-libmamba-solver_1698163451663/work/src
|
90 |
-
conda-pack @ file:///tmp/build/80754af9/conda-pack_1611163042455/work
|
91 |
-
conda-package-handling @ file:///croot/conda-package-handling_1690999929514/work
|
92 |
-
conda-repo-cli @ file:///croot/conda-repo-cli_1709246574569/work
|
93 |
-
conda-token @ file:///Users/paulyim/miniconda3/envs/c3i/conda-bld/conda-token_1662660369760/work
|
94 |
-
conda-verify==3.4.2
|
95 |
-
conda_index @ file:///croot/conda-index_1706633791028/work
|
96 |
-
conda_package_streaming @ file:///croot/conda-package-streaming_1690987966409/work
|
97 |
-
confection==0.0.4
|
98 |
-
configobj==5.0.8
|
99 |
-
configparser==7.0.0
|
100 |
-
contextlib2==21.6.0
|
101 |
-
contexttimer==0.3.3
|
102 |
-
contourpy==1.2.1
|
103 |
-
cramjam==2.8.3
|
104 |
-
crcmod==1.7
|
105 |
-
cryptography @ file:///croot/cryptography_1677533068310/work
|
106 |
-
cuda-python==12.4.0
|
107 |
-
curl_cffi==0.6.4
|
108 |
-
cycler==0.11.0
|
109 |
-
cymem==2.0.7
|
110 |
-
Cython==0.29.35
|
111 |
-
dacite==1.8.1
|
112 |
-
dag-cbor==0.3.2
|
113 |
-
datasets==2.21.0
|
114 |
-
dctorch==0.1.2
|
115 |
-
-e git+https://github.com/jannerm/ddpo.git@b217eef955a94bf58e4de68caa5ec0a6558c221d#egg=ddpo
|
116 |
-
debugpy==1.6.7
|
117 |
-
decorator==4.4.2
|
118 |
-
decord==0.6.0
|
119 |
-
DeepCache==0.1.1
|
120 |
-
deepspeed==0.14.2
|
121 |
-
defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work
|
122 |
-
Deprecated==1.2.14
|
123 |
-
deprecation==2.1.0
|
124 |
-
descript-audio-codec==1.0.0
|
125 |
-
descript-audiotools==0.7.2
|
126 |
-
diffusers @ git+https://github.com/huggingface/diffusers.git@06beecafc55cfddeb1b0b8660188de249f74b899
|
127 |
-
dill==0.3.6
|
128 |
-
disnake==2.9.0
|
129 |
-
Django==4.2.2
|
130 |
-
django-memcache-status==2.3
|
131 |
-
django-pylibmc==0.6.1
|
132 |
-
dm-tree==0.1.8
|
133 |
-
dnspython==2.6.1
|
134 |
-
docker-pycreds==0.4.0
|
135 |
-
docstring-parser==0.15
|
136 |
-
docutils==0.16
|
137 |
-
EasyProcess==1.1
|
138 |
-
einops==0.7.0
|
139 |
-
einops-exts==0.0.4
|
140 |
-
ema-pytorch==0.2.3
|
141 |
-
email_validator==2.1.1
|
142 |
-
emoji==2.4.0
|
143 |
-
encodec==0.1.1
|
144 |
-
entrypoints==0.4
|
145 |
-
envisage==7.0.3
|
146 |
-
etils==1.3.0
|
147 |
-
eva-decord==0.6.1
|
148 |
-
exceptiongroup==1.1.1
|
149 |
-
executing==1.2.0
|
150 |
-
facexlib==0.3.0
|
151 |
-
fairscale==0.4.4
|
152 |
-
fastapi==0.111.0
|
153 |
-
fastapi-cli==0.0.4
|
154 |
-
fastcore==1.5.44
|
155 |
-
fastjsonschema @ file:///opt/conda/conda-bld/python-fastjsonschema_1661371079312/work
|
156 |
-
fastparquet==2024.5.0
|
157 |
-
ffmpeg==1.4
|
158 |
-
ffmpeg-python==0.2.0
|
159 |
-
ffmpegio==0.8.3
|
160 |
-
ffmpegio-core==0.8.3
|
161 |
-
ffmpy==0.3.0
|
162 |
-
filelock @ file:///croot/filelock_1700591183607/work
|
163 |
-
filterpy==1.4.5
|
164 |
-
fire==0.6.0
|
165 |
-
flash-attn==2.5.9.post1
|
166 |
-
Flask==2.3.2
|
167 |
-
flatbuffers==23.5.26
|
168 |
-
flatten-dict==0.4.2
|
169 |
-
flax==0.6.9
|
170 |
-
flow-vis==0.1
|
171 |
-
fonttools==4.42.1
|
172 |
-
frozenlist==1.3.3
|
173 |
-
fsspec==2024.6.0
|
174 |
-
ftfy==6.1.1
|
175 |
-
future @ file:///croot/future_1677599870788/work
|
176 |
-
fvcore==0.1.5.post20221221
|
177 |
-
gast==0.4.0
|
178 |
-
gcs-oauth2-boto-plugin==3.0
|
179 |
-
gcsfs==2023.6.0
|
180 |
-
gdcm==1.1
|
181 |
-
gdown==4.7.1
|
182 |
-
gfpgan==1.3.8
|
183 |
-
gguf==0.16.2
|
184 |
-
gin-config==0.5.0
|
185 |
-
gitdb==4.0.10
|
186 |
-
GitPython==3.1.30
|
187 |
-
gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455533097/work
|
188 |
-
google-api-core==2.11.1
|
189 |
-
google-apitools==0.5.32
|
190 |
-
google-auth==2.29.0
|
191 |
-
google-auth-oauthlib==1.0.0
|
192 |
-
google-cloud-core==2.3.2
|
193 |
-
google-cloud-storage==2.10.0
|
194 |
-
google-crc32c==1.5.0
|
195 |
-
google-pasta==0.2.0
|
196 |
-
google-reauth==0.1.1
|
197 |
-
google-resumable-media==2.5.0
|
198 |
-
googleapis-common-protos==1.59.1
|
199 |
-
gradio==4.31.5
|
200 |
-
gradio_client==0.16.4
|
201 |
-
grpcio==1.54.2
|
202 |
-
gsutil==5.25
|
203 |
-
h11==0.14.0
|
204 |
-
h5py==3.11.0
|
205 |
-
hjson==3.1.0
|
206 |
-
holoviews==1.18.3
|
207 |
-
httpcore==1.0.5
|
208 |
-
httplib2==0.20.4
|
209 |
-
httptools==0.6.1
|
210 |
-
httpx==0.27.0
|
211 |
-
httpx-ws==0.3.1
|
212 |
-
huggingface-hub==0.30.2
|
213 |
-
humanfriendly==10.0
|
214 |
-
humanize==4.7.0
|
215 |
-
hydra-core==1.1.2
|
216 |
-
hyper-tile @ git+https://github.com/tfernd/HyperTile@2ef64b2800d007d305755c33550537410310d7df
|
217 |
-
icecream==2.1.3
|
218 |
-
identify==2.5.24
|
219 |
-
idna @ file:///croot/idna_1666125576474/work
|
220 |
-
imagebind @ git+https://github.com/facebookresearch/ImageBind.git@95d27c7fd5a8362f3527e176c3a80ae5a4d880c0
|
221 |
-
imageio==2.34.2
|
222 |
-
imageio-ffmpeg==0.4.8
|
223 |
-
importlib-metadata==6.8.0
|
224 |
-
importlib-resources==5.12.0
|
225 |
-
inflect==6.0.4
|
226 |
-
inflection==0.5.1
|
227 |
-
install==1.3.5
|
228 |
-
iopath==0.1.9
|
229 |
-
ipykernel==6.25.0
|
230 |
-
ipython==8.14.0
|
231 |
-
ipywidgets==8.0.6
|
232 |
-
itsdangerous==2.1.2
|
233 |
-
jaraco.classes @ file:///tmp/build/80754af9/jaraco.classes_1620983179379/work
|
234 |
-
jax==0.4.6
|
235 |
-
jaxlib==0.4.6
|
236 |
-
jedi==0.19.0
|
237 |
-
jeepney @ file:///tmp/build/80754af9/jeepney_1627537048313/work
|
238 |
-
Jinja2==3.1.2
|
239 |
-
jmespath==0.10.0
|
240 |
-
joblib==1.3.2
|
241 |
-
jsonmerge==1.8.0
|
242 |
-
jsonpatch @ file:///croot/jsonpatch_1710807507480/work
|
243 |
-
jsonpointer==2.1
|
244 |
-
jsonschema @ file:///croot/jsonschema_1699041609003/work
|
245 |
-
jsonschema-specifications @ file:///croot/jsonschema-specifications_1699032386549/work
|
246 |
-
julius==0.2.7
|
247 |
-
jupyter-js-widgets-nbextension==0.0.2.dev0
|
248 |
-
jupyter_client==8.3.0
|
249 |
-
jupyter_core @ file:///croot/jupyter_core_1698937308754/work
|
250 |
-
jupyterlab-widgets==3.0.7
|
251 |
-
k-diffusion==0.1.1
|
252 |
-
kaggle==1.5.13
|
253 |
-
kagglehub==0.3.12
|
254 |
-
kandinsky2 @ git+https://github.com/ai-forever/Kandinsky-2.git@aeefc1ce3a989eefe7c99d6a02cce44318c4d210
|
255 |
-
kecam==1.4.1
|
256 |
-
keras==2.14.0
|
257 |
-
keras-efficientnet-v2==1.2.2
|
258 |
-
Keras-Preprocessing==1.1.2
|
259 |
-
keyring @ file:///croot/keyring_1709632513808/work
|
260 |
-
kiwisolver==1.4.5
|
261 |
-
kornia==0.6.7
|
262 |
-
laion-clap==1.1.4
|
263 |
-
langcodes==3.3.0
|
264 |
-
lark==1.1.2
|
265 |
-
lazy_loader==0.2
|
266 |
-
libarchive-c @ file:///tmp/build/80754af9/python-libarchive-c_1617780486945/work
|
267 |
-
libclang==16.0.0
|
268 |
-
libmambapy @ file:///croot/mamba-split_1694187754698/work/libmambapy
|
269 |
-
librosa==0.9.2
|
270 |
-
lightning-utilities==0.8.0
|
271 |
-
linkify-it-py==2.0.2
|
272 |
-
lit==16.0.6
|
273 |
-
llvmlite==0.42.0
|
274 |
-
lmdb==1.4.1
|
275 |
-
local-attention==1.8.6
|
276 |
-
loguru==0.7.2
|
277 |
-
lpips==0.1.4
|
278 |
-
lvis==0.5.3
|
279 |
-
lxml==4.9.4
|
280 |
-
Markdown==3.6
|
281 |
-
markdown-it-py==2.2.0
|
282 |
-
markdown2==2.4.8
|
283 |
-
MarkupSafe==2.1.2
|
284 |
-
matplotlib==3.7.3
|
285 |
-
matplotlib-inline==0.1.6
|
286 |
-
mayavi==4.8.1
|
287 |
-
mc-bin-client==1.0.1
|
288 |
-
mdit-py-plugins==0.3.3
|
289 |
-
mdurl==0.1.2
|
290 |
-
mediapipe==0.10.15
|
291 |
-
menuinst @ file:///croot/menuinst_1706732933928/work
|
292 |
-
mkl-fft @ file:///croot/mkl_fft_1695058164594/work
|
293 |
-
mkl-random @ file:///croot/mkl_random_1695059800811/work
|
294 |
-
mkl-service==2.4.0
|
295 |
-
ml-collections==0.1.1
|
296 |
-
ml-dtypes==0.2.0
|
297 |
-
mmcv==1.7.2
|
298 |
-
mmengine==0.10.4
|
299 |
-
model-index==0.1.11
|
300 |
-
more-itertools @ file:///croot/more-itertools_1700662129964/work
|
301 |
-
MouseInfo==0.1.3
|
302 |
-
moviepy==1.0.3
|
303 |
-
mpmath @ file:///croot/mpmath_1690848262763/work
|
304 |
-
msgpack==1.0.5
|
305 |
-
multidict==6.0.4
|
306 |
-
multiformats==0.2.1
|
307 |
-
multiformats-config==0.2.0.post4
|
308 |
-
multiprocess==0.70.14
|
309 |
-
murmurhash==1.0.9
|
310 |
-
mypy-extensions==1.0.0
|
311 |
-
namex==0.0.8
|
312 |
-
natsort==8.4.0
|
313 |
-
navigator-updater @ file:///croot/navigator-updater_1713453362034/work
|
314 |
-
nbformat @ file:///croot/nbformat_1694616755618/work
|
315 |
-
ndindex==1.8
|
316 |
-
nest-asyncio==1.5.7
|
317 |
-
networkx==3.1
|
318 |
-
nh3==0.2.13
|
319 |
-
nibabel==5.1.0
|
320 |
-
ninja==1.11.1
|
321 |
-
nlpaug==1.1.11
|
322 |
-
nltk==3.8.1
|
323 |
-
nodeenv==1.8.0
|
324 |
-
numba==0.59.1
|
325 |
-
numexpr @ file:///croot/numexpr_1696515281613/work
|
326 |
-
numpy==1.26.4
|
327 |
-
nvidia-cublas-cu11==11.11.3.6
|
328 |
-
nvidia-cublas-cu117==11.10.1.25
|
329 |
-
nvidia-cublas-cu12==12.3.4.1
|
330 |
-
nvidia-cuda-cupti-cu11==11.8.87
|
331 |
-
nvidia-cuda-cupti-cu117==11.7.50
|
332 |
-
nvidia-cuda-cupti-cu12==12.3.101
|
333 |
-
nvidia-cuda-nvcc-cu11==11.8.89
|
334 |
-
nvidia-cuda-nvcc-cu12==12.3.107
|
335 |
-
nvidia-cuda-nvrtc-cu11==11.8.89
|
336 |
-
nvidia-cuda-nvrtc-cu12==12.3.107
|
337 |
-
nvidia-cuda-runtime-cu11==11.8.89
|
338 |
-
nvidia-cuda-runtime-cu117==11.7.60
|
339 |
-
nvidia-cuda-runtime-cu12==12.3.101
|
340 |
-
nvidia-cudnn-cu11==8.7.0.84
|
341 |
-
nvidia-cudnn-cu116==8.4.0.27
|
342 |
-
nvidia-cudnn-cu12==9.0.0.312
|
343 |
-
nvidia-cufft-cu11==10.9.0.58
|
344 |
-
nvidia-cufft-cu12==11.0.12.1
|
345 |
-
nvidia-curand-cu11==10.3.0.86
|
346 |
-
nvidia-curand-cu12==10.3.4.107
|
347 |
-
nvidia-cusolver-cu11==11.4.1.48
|
348 |
-
nvidia-cusolver-cu12==11.5.4.101
|
349 |
-
nvidia-cusparse-cu11==11.7.5.86
|
350 |
-
nvidia-cusparse-cu12==12.2.0.103
|
351 |
-
nvidia-nccl-cu11==2.19.3
|
352 |
-
nvidia-nccl-cu12==2.19.3
|
353 |
-
nvidia-nvjitlink-cu12==12.3.101
|
354 |
-
nvidia-nvtx-cu11==11.8.86
|
355 |
-
nvidia-pyindex==1.0.9
|
356 |
-
oauth2client==4.1.3
|
357 |
-
oauthlib==3.2.2
|
358 |
-
omegaconf==2.3.0
|
359 |
-
onnx==1.15.0
|
360 |
-
onnx-graphsurgeon==0.5.2
|
361 |
-
onnx2torch==1.5.6
|
362 |
-
onnxruntime==1.16.3
|
363 |
-
open_clip_torch==2.26.1
|
364 |
-
openai==0.27.8
|
365 |
-
opencv-contrib-python==4.6.0.66
|
366 |
-
opencv-python==4.6.0
|
367 |
-
opendatalab==0.0.10
|
368 |
-
opendatasets==0.1.22
|
369 |
-
openmim==0.3.9
|
370 |
-
openxlab==0.1.1
|
371 |
-
opt-einsum==3.3.0
|
372 |
-
optax==0.1.5
|
373 |
-
optree==0.11.0
|
374 |
-
orbax-checkpoint==0.1.6
|
375 |
-
ordered-set==4.1.0
|
376 |
-
orjson==3.9.0
|
377 |
-
oss2==2.17.0
|
378 |
-
outcome==1.3.0.post0
|
379 |
-
packaging @ file:///croot/packaging_1710807400464/work
|
380 |
-
pandas==2.0.2
|
381 |
-
panel==1.4.4
|
382 |
-
param==2.1.0
|
383 |
-
parameterized==0.9.0
|
384 |
-
parso==0.8.3
|
385 |
-
pathspec==0.11.1
|
386 |
-
pathtools==0.1.2
|
387 |
-
pathy==0.10.1
|
388 |
-
pedalboard==0.7.4
|
389 |
-
peewee==3.16.2
|
390 |
-
peft==0.10.0
|
391 |
-
pexpect==4.8.0
|
392 |
-
pickleshare==0.7.5
|
393 |
-
piexif==1.1.3
|
394 |
-
Pillow==9.4.0
|
395 |
-
pkce @ file:///croot/pkce_1690384816590/work
|
396 |
-
pkginfo @ file:///croot/pkginfo_1679431160147/work
|
397 |
-
platformdirs==3.8.0
|
398 |
-
plotly==5.14.1
|
399 |
-
pluggy @ file:///tmp/build/80754af9/pluggy_1648024709248/work
|
400 |
-
ply==3.11
|
401 |
-
polygraphy==0.49.9
|
402 |
-
pooch==1.8.1
|
403 |
-
portalocker==2.7.0
|
404 |
-
pre-commit==3.3.1
|
405 |
-
prefigure==0.0.9
|
406 |
-
preshed==3.0.8
|
407 |
-
proglog==0.1.10
|
408 |
-
progressbar==2.5
|
409 |
-
prompt-toolkit==3.0.39
|
410 |
-
protobuf==4.25.3
|
411 |
-
psutil==5.9.5
|
412 |
-
ptyprocess==0.7.0
|
413 |
-
pure-eval==0.2.2
|
414 |
-
py-cpuinfo==9.0.0
|
415 |
-
pyarrow==17.0.0
|
416 |
-
pyasn1==0.6.0
|
417 |
-
pyasn1-modules==0.3.0
|
418 |
-
PyAutoGUI==0.9.54
|
419 |
-
pyav==12.0.5
|
420 |
-
pycocoevalcap==1.2
|
421 |
-
pycocotools==2.0.6
|
422 |
-
pycosat @ file:///croot/pycosat_1696536503704/work
|
423 |
-
pycparser==2.21
|
424 |
-
pycryptodome==3.20.0
|
425 |
-
pycryptodomex==3.19.0
|
426 |
-
pydantic==2.7.3
|
427 |
-
pydantic_core==2.18.4
|
428 |
-
pydeck==0.8.1b0
|
429 |
-
pyDeprecate==0.3.2
|
430 |
-
pydicom==2.3.1
|
431 |
-
pydot==1.4.2
|
432 |
-
pydub==0.25.1
|
433 |
-
pyface==8.0.0
|
434 |
-
PyGetWindow==0.0.9
|
435 |
-
Pygments==2.15.1
|
436 |
-
PyJWT==2.7.0
|
437 |
-
pylibmc==1.6.3
|
438 |
-
pyloudnorm==0.1.1
|
439 |
-
pymemcache==4.0.0
|
440 |
-
Pympler==1.0.1
|
441 |
-
PyMsgBox==1.0.9
|
442 |
-
pynndescent==0.5.12
|
443 |
-
pynvml==11.5.0
|
444 |
-
pyOpenSSL @ file:///croot/pyopenssl_1690223430423/work
|
445 |
-
pyparsing==3.1.1
|
446 |
-
pyperclip==1.9.0
|
447 |
-
pyproj==3.6.0
|
448 |
-
PyQt5==5.15.10
|
449 |
-
PyQt5-sip @ file:///croot/pyqt-split_1698769088074/work/pyqt_sip
|
450 |
-
pyre-extensions==0.0.29
|
451 |
-
PyRect==0.2.0
|
452 |
-
PyScreeze==1.0.1
|
453 |
-
pyshp==2.3.1
|
454 |
-
PySocks==1.7.1
|
455 |
-
pystoi==0.4.1
|
456 |
-
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
|
457 |
-
python-docx==0.8.11
|
458 |
-
python-dotenv==1.0.0
|
459 |
-
python-magic==0.4.27
|
460 |
-
python-memcached==1.59
|
461 |
-
python-multipart==0.0.9
|
462 |
-
python-slugify==8.0.1
|
463 |
-
python3-xlib==0.15
|
464 |
-
pytorch-lantern==0.12.7
|
465 |
-
pytorch-lightning==2.1.0
|
466 |
-
pytorch-pretrained-biggan==0.1.1
|
467 |
-
pytorch-warmup==0.1.1
|
468 |
-
pytorchvideo==0.1.5
|
469 |
-
pytweening==1.2.0
|
470 |
-
pytz @ file:///croot/pytz_1695131579487/work
|
471 |
-
pyu2f==0.1.5
|
472 |
-
PyVirtualDisplay==3.0
|
473 |
-
pyviz_comms==3.0.2
|
474 |
-
PyWavelets==1.4.1
|
475 |
-
PyYAML==6.0
|
476 |
-
pyzmq==25.1.0
|
477 |
-
QtPy @ file:///croot/qtpy_1700144840038/work
|
478 |
-
randomname==0.2.1
|
479 |
-
realesrgan==0.3.0
|
480 |
-
referencing @ file:///croot/referencing_1699012038513/work
|
481 |
-
regex==2023.6.3
|
482 |
-
repeng @ git+https://github.com/vgel/repeng.git@c9093abddd87f865e7e2bcf4b3e556ec8813b5b2
|
483 |
-
replicate==0.25.1
|
484 |
-
requests==2.32.3
|
485 |
-
requests-oauthlib==1.3.1
|
486 |
-
requests-toolbelt @ file:///croot/requests-toolbelt_1690874004362/work
|
487 |
-
resampy==0.4.3
|
488 |
-
resize-right==0.0.2
|
489 |
-
responses==0.18.0
|
490 |
-
retry-decorator==1.1.1
|
491 |
-
rfc3986==1.5.0
|
492 |
-
rich==12.6.0
|
493 |
-
rotary-embedding-torch==0.3.0
|
494 |
-
rpds-py @ file:///croot/rpds-py_1698945930462/work
|
495 |
-
rsa==4.7.2
|
496 |
-
ruamel-yaml-conda @ file:///croot/ruamel_yaml_1667489728852/work
|
497 |
-
ruamel.yaml @ file:///croot/ruamel.yaml_1666304550667/work
|
498 |
-
ruamel.yaml.clib @ file:///croot/ruamel.yaml.clib_1666302247304/work
|
499 |
-
ruff==0.4.1
|
500 |
-
s2wrapper @ git+https://github.com/bfshi/scaling_on_scales@f08aec91337ae1ed6d7cc7a55441a96d51c14dd1
|
501 |
-
s3fs==2024.6.0
|
502 |
-
s3transfer==0.10.1
|
503 |
-
sacremoses==0.0.53
|
504 |
-
safetensors==0.4.1
|
505 |
-
salesforce-lavis @ git+https://github.com/salesforce/LAVIS.git@4a85b17846ee62f09c40f37cc955dd33c2abec68
|
506 |
-
scikit-image==0.20.0
|
507 |
-
scikit-learn==1.5.1
|
508 |
-
scikit-surprise==1.1.3
|
509 |
-
scipy==1.11.1
|
510 |
-
SecretStorage @ file:///croot/secretstorage_1678709481048/work
|
511 |
-
selenium==4.29.0
|
512 |
-
semantic-version==2.10.0
|
513 |
-
semver @ file:///croot/semver_1709243621175/work
|
514 |
-
sentencepiece==0.1.99
|
515 |
-
sentry-sdk==1.25.1
|
516 |
-
setproctitle==1.3.2
|
517 |
-
sgm @ file:///home/ryn_mote/Misc/generative-models
|
518 |
-
shapely==2.0.1
|
519 |
-
shellingham==1.5.0.post1
|
520 |
-
shortuuid==1.0.11
|
521 |
-
SimpleITK==2.2.1
|
522 |
-
sip @ file:///croot/sip_1698675935381/work
|
523 |
-
six @ file:///tmp/build/80754af9/six_1644875935023/work
|
524 |
-
sk-video==1.1.10
|
525 |
-
smart-open==6.3.0
|
526 |
-
smmap==5.0.0
|
527 |
-
sniffio==1.3.0
|
528 |
-
sortedcontainers==2.4.0
|
529 |
-
sounddevice==0.5.0
|
530 |
-
SoundFile==0.10.2
|
531 |
-
soupsieve==2.4.1
|
532 |
-
spaces==0.27.0
|
533 |
-
spacy==3.5.3
|
534 |
-
spacy-legacy==3.0.12
|
535 |
-
spacy-loggers==1.0.4
|
536 |
-
sqlparse==0.4.4
|
537 |
-
srsly==2.4.6
|
538 |
-
stable-audio-tools==0.0.16
|
539 |
-
stable-fast @ https://github.com/chengzeyi/stable-fast/releases/download/v1.0.4/stable_fast-1.0.4+torch220cu118-cp310-cp310-manylinux2014_x86_64.whl#sha256=11716f733237f557bee452eee63db415b4daeff29a28d939f73fff8003f0d415
|
540 |
-
stack-data==0.6.2
|
541 |
-
stanza==1.5.0
|
542 |
-
starlette==0.37.2
|
543 |
-
streamlit==1.22.0
|
544 |
-
svgwrite==1.4.3
|
545 |
-
sympy @ file:///croot/sympy_1701397643339/work
|
546 |
-
tables==3.9.2
|
547 |
-
tabulate==0.9.0
|
548 |
-
tenacity==8.2.2
|
549 |
-
tensorboard==2.14.1
|
550 |
-
tensorboard-data-server==0.7.2
|
551 |
-
tensorboard-plugin-wit==1.8.1
|
552 |
-
tensorflow==2.14.0
|
553 |
-
tensorflow-addons==0.16.1
|
554 |
-
tensorflow-estimator==2.14.0
|
555 |
-
tensorflow-hub==0.16.1
|
556 |
-
tensorflow-io-gcs-filesystem==0.32.0
|
557 |
-
tensorrt==8.6.1.post1
|
558 |
-
tensorrt-bindings==8.6.1
|
559 |
-
tensorrt-libs==8.6.1
|
560 |
-
tensorstore==0.1.39
|
561 |
-
termcolor==2.3.0
|
562 |
-
text-unidecode==1.3
|
563 |
-
tf-estimator-nightly==2.8.0.dev2021122109
|
564 |
-
tf_keras==2.16.0
|
565 |
-
tgate==0.1.1
|
566 |
-
thinc==8.1.10
|
567 |
-
threadpoolctl==3.2.0
|
568 |
-
tifffile==2023.4.12
|
569 |
-
tiktoken==0.4.0
|
570 |
-
timm==0.9.8
|
571 |
-
tokenizers==0.20.3
|
572 |
-
tomesd==0.1.3
|
573 |
-
tomli==2.0.1
|
574 |
-
tomlkit==0.12.0
|
575 |
-
toolz==0.12.0
|
576 |
-
torch==2.2.2+cu118
|
577 |
-
torch-ema==0.3
|
578 |
-
torch-stoi==0.2.1
|
579 |
-
torchaudio==2.0.2+cu118
|
580 |
-
torchdiffeq==0.2.3
|
581 |
-
torchio==0.19.0
|
582 |
-
torchlibrosa==0.1.0
|
583 |
-
torchmetrics==0.11.4
|
584 |
-
torchsde==0.2.6
|
585 |
-
torchvision==0.15.2+cu118
|
586 |
-
tornado @ file:///croot/tornado_1696936946304/work
|
587 |
-
tqdm==4.66.5
|
588 |
-
traitlets @ file:///croot/traitlets_1671143879854/work
|
589 |
-
traits==6.4.1
|
590 |
-
traitsui==8.0.0
|
591 |
-
trampoline==0.1.2
|
592 |
-
transformers==4.46.3
|
593 |
-
trio==0.29.0
|
594 |
-
trio-websocket==0.12.2
|
595 |
-
triton==2.2.0
|
596 |
-
truststore @ file:///croot/truststore_1695244293384/work
|
597 |
-
typed-argument-parser==1.8.1
|
598 |
-
typeguard==4.2.1
|
599 |
-
typer==0.12.3
|
600 |
-
types-regex==2023.6.3.1
|
601 |
-
typing-inspect==0.8.0
|
602 |
-
typing-validation==1.0.0.post2
|
603 |
-
typing_extensions==4.12.2
|
604 |
-
tzdata @ file:///croot/python-tzdata_1690578112552/work
|
605 |
-
tzlocal==5.0.1
|
606 |
-
uc-micro-py==1.0.2
|
607 |
-
ujson @ file:///opt/conda/conda-bld/ujson_1657544923770/work
|
608 |
-
umap-learn==0.5.6
|
609 |
-
undetected-chromedriver==3.5.5
|
610 |
-
urllib3==1.26.18
|
611 |
-
uvicorn==0.29.0
|
612 |
-
uvloop==0.19.0
|
613 |
-
v-diffusion-pytorch==0.0.2
|
614 |
-
validators==0.20.0
|
615 |
-
vector-quantize-pytorch==1.9.14
|
616 |
-
vtk==9.2.6
|
617 |
-
wandb==0.15.4
|
618 |
-
wasabi==1.1.1
|
619 |
-
watchdog==3.0.0
|
620 |
-
watchfiles==0.22.0
|
621 |
-
wavedrom==2.0.3.post3
|
622 |
-
wcwidth==0.2.6
|
623 |
-
webdataset==0.2.48
|
624 |
-
webencodings==0.5.1
|
625 |
-
websocket-client==1.8.0
|
626 |
-
websockets==11.0.3
|
627 |
-
Werkzeug==2.3.4
|
628 |
-
wget==3.2
|
629 |
-
widgetsnbextension==4.0.7
|
630 |
-
wikipedia==1.4.0
|
631 |
-
wrapt==1.14.1
|
632 |
-
wsproto==1.2.0
|
633 |
-
x-transformers==1.26.6
|
634 |
-
xformers==0.0.20
|
635 |
-
xxhash==3.2.0
|
636 |
-
xyzservices==2024.4.0
|
637 |
-
yacs==0.1.8
|
638 |
-
yapf==0.40.1
|
639 |
-
yarl==1.9.2
|
640 |
-
yattag==1.15.1
|
641 |
-
zipp==3.16.0
|
642 |
-
zstandard @ file:///croot/zstandard_1677013143055/work
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|