rynmurdock commited on
Commit
fc2fdc7
·
1 Parent(s): 0429e22
app.py CHANGED
@@ -58,7 +58,7 @@ def generate_gpu(in_im_embs, prompt='the scene'):
58
  num_inference_steps=50,
59
  image_embeds=positive_image_embeds,
60
  negative_image_embeds=negative_image_embeds,
61
- guidance_scale=11,
62
  ).images[0]
63
  cond = (
64
  model.prior_pipe.image_processor(images, return_tensors="pt")
@@ -101,17 +101,17 @@ def sample_embs(prompt_embeds):
101
  @spaces.GPU()
102
  def get_user_emb(embs, ys):
103
  positives = [e for e, ys in zip(embs, ys) if ys == 1]
104
- embs = random.sample(positives, min(8, len(positives)))
105
- if len(embs) == 0:
106
  positives = torch.zeros_like(im_emb)[None]
107
  else:
 
108
  positives = torch.stack(embs, 1)
109
 
110
  negs = [e for e, ys in zip(embs, ys) if ys == 0]
111
- negative_embs = random.sample(negs, min(8, len(negs)))
112
- if len(negative_embs) == 0:
113
  negatives = torch.zeros_like(im_emb)[None]
114
  else:
 
115
  negatives = torch.stack(negative_embs, 1)
116
 
117
  image_embeds = torch.stack([sample_embs(negatives), sample_embs(positives)])
@@ -186,12 +186,8 @@ def pluck_img(user_id):
186
  time.sleep(.1)
187
  # TODO optimize this lol
188
 
 
189
  unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == user_id for i in not_rated_rows.iterrows()]]
190
- if len(unrated_from_user) > 0:
191
- print(unrated_from_user)
192
- # NOTE the way I've setup pandas here is so gdm horrible. TODO overhaul
193
- img = unrated_from_user['paths'].to_list()[-1]
194
- return img
195
 
196
  best_sim = -10000000
197
  for i in not_rated_rows.iterrows():
@@ -390,7 +386,7 @@ Explore the latent space using binary feedback.
390
  [b1, b2, b3, b4, b5, b6, img, calibrate_prompts, user_id, ]
391
  )
392
  with gr.Row():
393
- html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several images and then roam. </ div><br><br><br>
394
 
395
  <br><br>
396
  <div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
 
58
  num_inference_steps=50,
59
  image_embeds=positive_image_embeds,
60
  negative_image_embeds=negative_image_embeds,
61
+ guidance_scale=15,
62
  ).images[0]
63
  cond = (
64
  model.prior_pipe.image_processor(images, return_tensors="pt")
 
101
  @spaces.GPU()
102
  def get_user_emb(embs, ys):
103
  positives = [e for e, ys in zip(embs, ys) if ys == 1]
104
+ if len(positives) == 0:
 
105
  positives = torch.zeros_like(im_emb)[None]
106
  else:
107
+ embs = random.sample(positives, min(4, len(positives))) + positives[-4:]
108
  positives = torch.stack(embs, 1)
109
 
110
  negs = [e for e, ys in zip(embs, ys) if ys == 0]
111
+ if len(negs) == 0:
 
112
  negatives = torch.zeros_like(im_emb)[None]
113
  else:
114
+ negative_embs = random.sample(negs, min(4, len(negs))) + negs[-4:]
115
  negatives = torch.stack(negative_embs, 1)
116
 
117
  image_embeds = torch.stack([sample_embs(negatives), sample_embs(positives)])
 
186
  time.sleep(.1)
187
  # TODO optimize this lol
188
 
189
+ # NOTE could opt for only showing their own or prioritizing their own media.
190
  unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == user_id for i in not_rated_rows.iterrows()]]
 
 
 
 
 
191
 
192
  best_sim = -10000000
193
  for i in not_rated_rows.iterrows():
 
386
  [b1, b2, b3, b4, b5, b6, img, calibrate_prompts, user_id, ]
387
  )
388
  with gr.Row():
389
+ html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several images and then roam. When your media is generating, you may encounter others'.</ div><br><br><br>
390
 
391
  <br><br>
392
  <div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
last_epoch_ckpt/diffusion_pytorch_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:91ca25967a5dd1665b5fb8f1b4a45ba0f7ad0c23929daefb26b267816616e05d
3
  size 136790920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65a902c101345526b244420a5e6f495a947909db28015840afa9bacd557936b
3
  size 136790920
latest_val.png DELETED

Git LFS Details

  • SHA256: 5a251efe84452e962b3626af8824ec871bc5bd1be3351332484a6a3c7b5e3ddd
  • Pointer size: 131 Bytes
  • Size of remote file: 469 kB
prior/pipeline_kandinsky_prior.py CHANGED
@@ -401,6 +401,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
401
  def __call__(
402
  self,
403
  prompt: Union[str, List[str]],
 
404
  negative_prompt: Optional[Union[str, List[str]]] = None,
405
  num_images_per_prompt: int = 1,
406
  num_inference_steps: int = 25,
@@ -471,11 +472,11 @@ class KandinskyPriorPipeline(DiffusionPipeline):
471
  prompt_embeds = torch.cat(full_seq, 0)
472
  full_prompt.append(prompt_embeds)
473
  prompt_embeds = torch.stack(full_prompt)
474
- if prompt_embeds.shape[1] < 8: # TODO grab as `k` arg from config
475
- prompt_embeds = torch.nn.functional.pad(prompt_embeds, [0, 0, 0, 8-prompt_embeds.shape[1]])
476
- assert prompt_embeds.shape[1] == 8, f"The model is set to take `k`` cond image embeds but is shape {prompt_embeds.shape}"
477
 
478
- prompt_embeds = prompt_embeds.to('cuda') # TODO set with `k` arg from config
479
 
480
  hidden_states = torch.randn(
481
  (batch_size, prompt_embeds.shape[-1]),
@@ -495,7 +496,25 @@ class KandinskyPriorPipeline(DiffusionPipeline):
495
 
496
  # if negative prompt has been defined, we retrieve split the image embedding into two
497
  if negative_prompt is None:
498
- zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499
 
500
  if (
501
  hasattr(self, "final_offload_hook")
 
401
  def __call__(
402
  self,
403
  prompt: Union[str, List[str]],
404
+ k,
405
  negative_prompt: Optional[Union[str, List[str]]] = None,
406
  num_images_per_prompt: int = 1,
407
  num_inference_steps: int = 25,
 
472
  prompt_embeds = torch.cat(full_seq, 0)
473
  full_prompt.append(prompt_embeds)
474
  prompt_embeds = torch.stack(full_prompt)
475
+ if prompt_embeds.shape[1] < k:
476
+ prompt_embeds = torch.nn.functional.pad(prompt_embeds, [0, 0, 0, k-prompt_embeds.shape[1]])
477
+ assert prompt_embeds.shape[1] == k, f"The model is set to take `k`` cond image embeds but is shape {prompt_embeds.shape}"
478
 
479
+ prompt_embeds = prompt_embeds.to('cuda')
480
 
481
  hidden_states = torch.randn(
482
  (batch_size, prompt_embeds.shape[-1]),
 
496
 
497
  # if negative prompt has been defined, we retrieve split the image embedding into two
498
  if negative_prompt is None:
499
+ # zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
500
+
501
+ # using the same hidden states or different hidden states?
502
+
503
+ hidden_states = torch.randn(
504
+ (batch_size, prompt_embeds.shape[-1]),
505
+ device=prompt_embeds.device,
506
+ dtype=prompt_embeds.dtype,
507
+ generator=generator,
508
+ )
509
+
510
+ latents = self.prior(
511
+ hidden_states,
512
+ proj_embedding=torch.zeros_like(prompt_embeds),
513
+ encoder_hidden_states=torch.zeros_like(prompt_embeds),
514
+ attention_mask=text_mask,
515
+ ).predicted_image_embedding
516
+
517
+ zero_embeds = latents
518
 
519
  if (
520
  hasattr(self, "final_offload_hook")
train.py CHANGED
@@ -1,94 +1 @@
1
-
2
-
3
- ########################################
4
- # python -m train
5
- ###########################################
6
-
7
-
8
- import torch
9
- import logging
10
- import numpy as np
11
- from tqdm import tqdm
12
- from PIL import Image
13
-
14
- from data import get_dataloader
15
- from model import get_model_and_tokenizer, get_optimizer
16
- import config
17
-
18
- logging.basicConfig(level=logging.INFO)
19
-
20
- def get_loss(model, input, target, tokenizer):
21
- with torch.no_grad():
22
- assert len(input.shape) == 5 # [batch, s, c, w, h]
23
- cuts = config.number_k_clip_embed
24
- assert input.shape[0] * input.shape[1] % cuts == 0, 'batch size * `k` preferred embeds must be divisible by cuts'
25
- input = input.view(cuts//8, -1, 3, target.shape[-2], target.shape[-1])
26
- full_seq = []
27
- for b in input:
28
- input = tokenizer(b)['image_embeds'] # in our case, tokenizer is a clip embedding model
29
- full_seq.append(input)
30
- input = torch.stack(full_seq)
31
-
32
- target = tokenizer(target)['image_embeds']
33
-
34
- input = input.view(target.shape[0], -1, target.shape[-1])
35
- assert len(input.shape) == 3 # [batch, sequence, inner]
36
-
37
- with torch.cuda.amp.autocast(enabled=False, ):
38
- input = input.to(torch.float32)
39
- latent = torch.randn(input.shape[0], input.shape[-1], device=input.device)
40
- output = model(latent, input).predicted_image_embedding
41
-
42
- target = target.to(torch.float32)
43
- mse_loss = torch.nn.functional.mse_loss(target, output).mean()
44
-
45
- assert len(target.shape) == 2 and len(output.shape) == 2
46
- cosine_loss = 1 - torch.nn.functional.cosine_similarity(output, target).mean()
47
- loss = mse_loss + .2 * cosine_loss
48
-
49
- logging.info(f'MSE: {mse_loss.item()}, Cosine: {cosine_loss.item()}, Weighted Total: {loss.item()}')
50
- # TODO wandb
51
-
52
- return loss
53
-
54
- def main():
55
- np.random.seed(config.seed)
56
- torch.manual_seed(config.seed)
57
-
58
- model, tokenizer = get_model_and_tokenizer(config.model_path, config.device, config.dtype)
59
- optimizer = get_optimizer(list(model.prior.parameters()), config.lr)
60
- dataloader = get_dataloader(config.data_path, config.batch_size, config.num_workers,
61
- model.prior_pipe.image_processor)
62
-
63
- for epoch in range(config.epochs):
64
- for ind, batch in tqdm(enumerate(iter(dataloader))):
65
- if batch is None:
66
- continue
67
-
68
- input, target = batch
69
- input = input.to(config.device)
70
- target = target.to(config.device)
71
-
72
- if ind % 50 == 0:
73
- with torch.cuda.amp.autocast(enabled=True, dtype=config.dtype): # NOTE using autocast because our training model is also our val model, so don't want to set to full half precision.
74
- examples = ['../generative_recommender/Blue_Tigers_space/1o.png',
75
- '../generative_recommender/Blue_Tigers_space/2o.png',
76
- '../generative_recommender/Blue_Tigers_space/3o.png',
77
- '../generative_recommender/Blue_Tigers_space/4o.png',
78
- '../generative_recommender/Blue_Tigers_space/5o.png',
79
- '../generative_recommender/Blue_Tigers_space/6o.png',
80
- '../generative_recommender/Blue_Tigers_space/7o.png',
81
- '../generative_recommender/Blue_Tigers_space/8o.png',]
82
- model.do_validation([[Image.open('../'+j) for j in examples]])
83
-
84
- loss = get_loss(model, input, target, tokenizer)
85
- loss.backward()
86
- optimizer.step()
87
- optimizer.zero_grad()
88
-
89
- if ind % 100 == 0:
90
- # TODO add loading from path
91
- model.prior.save_pretrained(f'{config.save_path}/last_epoch_ckpt', from_pt=True)
92
-
93
- if __name__ == '__main__':
94
- main()
 
1
+ ### See prefererence prior github for training code here: https://github.com/rynmurdock/preference-prior
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
train_requirements.txt DELETED
@@ -1,642 +0,0 @@
1
- absl-py==1.4.0
2
- accelerate==0.26.1
3
- addict==2.4.0
4
- aeiou==0.0.20
5
- aenum==3.1.15
6
- aiobotocore==2.13.0
7
- aiofiles==23.1.0
8
- aiohttp==3.9.5
9
- aioitertools==0.11.0
10
- aiosignal==1.3.1
11
- alias-free-torch==0.0.6
12
- aliyun-python-sdk-core==2.15.1
13
- aliyun-python-sdk-kms==2.16.3
14
- altair==4.2.2
15
- anaconda-anon-usage @ file:///croot/anaconda-anon-usage_1710965072196/work
16
- anaconda-client==1.11.2
17
- anaconda-cloud-auth @ file:///croot/anaconda-cloud-auth_1712794769769/work
18
- anaconda-navigator @ file:///croot/anaconda-navigator_1712087978399/work
19
- anaconda-project @ file:///opt/conda/conda-bld/anaconda-project_1660339890420/work
20
- annotated-types @ file:///croot/annotated-types_1709542908624/work
21
- antlr4-python3-runtime==4.9.3
22
- anyio==4.3.0
23
- appdirs==1.4.4
24
- apptools==5.2.1
25
- APScheduler==3.10.4
26
- argbind==0.3.9
27
- argcomplete==3.1.1
28
- asgiref==3.7.2
29
- asttokens==2.2.1
30
- astunparse==1.6.3
31
- async-timeout==4.0.2
32
- atproto==0.0.10
33
- attrs==25.1.0
34
- audioread==3.0.1
35
- auraloss==0.4.0
36
- av==10.0.0
37
- awscli==1.33.2
38
- backcall==0.2.0
39
- backports.functools-lru-cache @ file:///tmp/build/80754af9/backports.functools_lru_cache_1618170165463/work
40
- backports.tempfile @ file:///home/linux1/recipes/ci/backports.tempfile_1610991236607/work
41
- backports.weakref==1.0.post1
42
- bases==0.2.1
43
- basicsr==1.4.2
44
- beautifulsoup4==4.12.2
45
- bitsandbytes==0.43.1
46
- black==24.10.0
47
- bleach==6.1.0
48
- blendmodes==2022
49
- blinker==1.6.2
50
- blis==0.7.9
51
- blobfile==2.1.1
52
- blosc2==2.5.1
53
- bokeh==3.4.1
54
- boltons==23.0.0
55
- boto==2.49.0
56
- boto3==1.34.120
57
- botocore==1.34.120
58
- Bottleneck @ file:///croot/bottleneck_1707864210935/work
59
- braceexpand==0.1.7
60
- Brotli @ file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work
61
- brotlipy==0.7.0
62
- cached-property==1.5.2
63
- cachetools==5.3.3
64
- Cartopy==0.21.1
65
- catalogue==2.0.8
66
- certifi==2025.1.31
67
- cffi==1.15.1
68
- cfgv==3.3.1
69
- chardet @ file:///home/builder/ci_310/chardet_1640804867535/work
70
- charset-normalizer==3.1.0
71
- chex==0.1.81
72
- clean-fid==0.1.35
73
- click==8.1.3
74
- clip @ git+https://github.com/openai/CLIP.git@a9b1bf5920416aaeaec965c25dd9e8f98c864f16
75
- clip-anytorch==2.6.0
76
- cloudpickle==2.2.1
77
- clyent==1.2.2
78
- cmake==3.26.4
79
- colorama==0.4.6
80
- colorcet==3.1.0
81
- colored==2.2.4
82
- coloredlogs==15.0.1
83
- comm==0.1.4
84
- commonmark==0.9.1
85
- comtypes==1.2.0
86
- conda @ file:///croot/conda_1696257509808/work
87
- conda-build @ file:///croot/conda-build_1701720841368/work
88
- conda-content-trust @ file:///tmp/abs_5952f1c8-355c-4855-ad2e-538535021ba5h26t22e5/croots/recipe/conda-content-trust_1658126371814/work
89
- conda-libmamba-solver @ file:///croot/conda-libmamba-solver_1698163451663/work/src
90
- conda-pack @ file:///tmp/build/80754af9/conda-pack_1611163042455/work
91
- conda-package-handling @ file:///croot/conda-package-handling_1690999929514/work
92
- conda-repo-cli @ file:///croot/conda-repo-cli_1709246574569/work
93
- conda-token @ file:///Users/paulyim/miniconda3/envs/c3i/conda-bld/conda-token_1662660369760/work
94
- conda-verify==3.4.2
95
- conda_index @ file:///croot/conda-index_1706633791028/work
96
- conda_package_streaming @ file:///croot/conda-package-streaming_1690987966409/work
97
- confection==0.0.4
98
- configobj==5.0.8
99
- configparser==7.0.0
100
- contextlib2==21.6.0
101
- contexttimer==0.3.3
102
- contourpy==1.2.1
103
- cramjam==2.8.3
104
- crcmod==1.7
105
- cryptography @ file:///croot/cryptography_1677533068310/work
106
- cuda-python==12.4.0
107
- curl_cffi==0.6.4
108
- cycler==0.11.0
109
- cymem==2.0.7
110
- Cython==0.29.35
111
- dacite==1.8.1
112
- dag-cbor==0.3.2
113
- datasets==2.21.0
114
- dctorch==0.1.2
115
- -e git+https://github.com/jannerm/ddpo.git@b217eef955a94bf58e4de68caa5ec0a6558c221d#egg=ddpo
116
- debugpy==1.6.7
117
- decorator==4.4.2
118
- decord==0.6.0
119
- DeepCache==0.1.1
120
- deepspeed==0.14.2
121
- defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work
122
- Deprecated==1.2.14
123
- deprecation==2.1.0
124
- descript-audio-codec==1.0.0
125
- descript-audiotools==0.7.2
126
- diffusers @ git+https://github.com/huggingface/diffusers.git@06beecafc55cfddeb1b0b8660188de249f74b899
127
- dill==0.3.6
128
- disnake==2.9.0
129
- Django==4.2.2
130
- django-memcache-status==2.3
131
- django-pylibmc==0.6.1
132
- dm-tree==0.1.8
133
- dnspython==2.6.1
134
- docker-pycreds==0.4.0
135
- docstring-parser==0.15
136
- docutils==0.16
137
- EasyProcess==1.1
138
- einops==0.7.0
139
- einops-exts==0.0.4
140
- ema-pytorch==0.2.3
141
- email_validator==2.1.1
142
- emoji==2.4.0
143
- encodec==0.1.1
144
- entrypoints==0.4
145
- envisage==7.0.3
146
- etils==1.3.0
147
- eva-decord==0.6.1
148
- exceptiongroup==1.1.1
149
- executing==1.2.0
150
- facexlib==0.3.0
151
- fairscale==0.4.4
152
- fastapi==0.111.0
153
- fastapi-cli==0.0.4
154
- fastcore==1.5.44
155
- fastjsonschema @ file:///opt/conda/conda-bld/python-fastjsonschema_1661371079312/work
156
- fastparquet==2024.5.0
157
- ffmpeg==1.4
158
- ffmpeg-python==0.2.0
159
- ffmpegio==0.8.3
160
- ffmpegio-core==0.8.3
161
- ffmpy==0.3.0
162
- filelock @ file:///croot/filelock_1700591183607/work
163
- filterpy==1.4.5
164
- fire==0.6.0
165
- flash-attn==2.5.9.post1
166
- Flask==2.3.2
167
- flatbuffers==23.5.26
168
- flatten-dict==0.4.2
169
- flax==0.6.9
170
- flow-vis==0.1
171
- fonttools==4.42.1
172
- frozenlist==1.3.3
173
- fsspec==2024.6.0
174
- ftfy==6.1.1
175
- future @ file:///croot/future_1677599870788/work
176
- fvcore==0.1.5.post20221221
177
- gast==0.4.0
178
- gcs-oauth2-boto-plugin==3.0
179
- gcsfs==2023.6.0
180
- gdcm==1.1
181
- gdown==4.7.1
182
- gfpgan==1.3.8
183
- gguf==0.16.2
184
- gin-config==0.5.0
185
- gitdb==4.0.10
186
- GitPython==3.1.30
187
- gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455533097/work
188
- google-api-core==2.11.1
189
- google-apitools==0.5.32
190
- google-auth==2.29.0
191
- google-auth-oauthlib==1.0.0
192
- google-cloud-core==2.3.2
193
- google-cloud-storage==2.10.0
194
- google-crc32c==1.5.0
195
- google-pasta==0.2.0
196
- google-reauth==0.1.1
197
- google-resumable-media==2.5.0
198
- googleapis-common-protos==1.59.1
199
- gradio==4.31.5
200
- gradio_client==0.16.4
201
- grpcio==1.54.2
202
- gsutil==5.25
203
- h11==0.14.0
204
- h5py==3.11.0
205
- hjson==3.1.0
206
- holoviews==1.18.3
207
- httpcore==1.0.5
208
- httplib2==0.20.4
209
- httptools==0.6.1
210
- httpx==0.27.0
211
- httpx-ws==0.3.1
212
- huggingface-hub==0.30.2
213
- humanfriendly==10.0
214
- humanize==4.7.0
215
- hydra-core==1.1.2
216
- hyper-tile @ git+https://github.com/tfernd/HyperTile@2ef64b2800d007d305755c33550537410310d7df
217
- icecream==2.1.3
218
- identify==2.5.24
219
- idna @ file:///croot/idna_1666125576474/work
220
- imagebind @ git+https://github.com/facebookresearch/ImageBind.git@95d27c7fd5a8362f3527e176c3a80ae5a4d880c0
221
- imageio==2.34.2
222
- imageio-ffmpeg==0.4.8
223
- importlib-metadata==6.8.0
224
- importlib-resources==5.12.0
225
- inflect==6.0.4
226
- inflection==0.5.1
227
- install==1.3.5
228
- iopath==0.1.9
229
- ipykernel==6.25.0
230
- ipython==8.14.0
231
- ipywidgets==8.0.6
232
- itsdangerous==2.1.2
233
- jaraco.classes @ file:///tmp/build/80754af9/jaraco.classes_1620983179379/work
234
- jax==0.4.6
235
- jaxlib==0.4.6
236
- jedi==0.19.0
237
- jeepney @ file:///tmp/build/80754af9/jeepney_1627537048313/work
238
- Jinja2==3.1.2
239
- jmespath==0.10.0
240
- joblib==1.3.2
241
- jsonmerge==1.8.0
242
- jsonpatch @ file:///croot/jsonpatch_1710807507480/work
243
- jsonpointer==2.1
244
- jsonschema @ file:///croot/jsonschema_1699041609003/work
245
- jsonschema-specifications @ file:///croot/jsonschema-specifications_1699032386549/work
246
- julius==0.2.7
247
- jupyter-js-widgets-nbextension==0.0.2.dev0
248
- jupyter_client==8.3.0
249
- jupyter_core @ file:///croot/jupyter_core_1698937308754/work
250
- jupyterlab-widgets==3.0.7
251
- k-diffusion==0.1.1
252
- kaggle==1.5.13
253
- kagglehub==0.3.12
254
- kandinsky2 @ git+https://github.com/ai-forever/Kandinsky-2.git@aeefc1ce3a989eefe7c99d6a02cce44318c4d210
255
- kecam==1.4.1
256
- keras==2.14.0
257
- keras-efficientnet-v2==1.2.2
258
- Keras-Preprocessing==1.1.2
259
- keyring @ file:///croot/keyring_1709632513808/work
260
- kiwisolver==1.4.5
261
- kornia==0.6.7
262
- laion-clap==1.1.4
263
- langcodes==3.3.0
264
- lark==1.1.2
265
- lazy_loader==0.2
266
- libarchive-c @ file:///tmp/build/80754af9/python-libarchive-c_1617780486945/work
267
- libclang==16.0.0
268
- libmambapy @ file:///croot/mamba-split_1694187754698/work/libmambapy
269
- librosa==0.9.2
270
- lightning-utilities==0.8.0
271
- linkify-it-py==2.0.2
272
- lit==16.0.6
273
- llvmlite==0.42.0
274
- lmdb==1.4.1
275
- local-attention==1.8.6
276
- loguru==0.7.2
277
- lpips==0.1.4
278
- lvis==0.5.3
279
- lxml==4.9.4
280
- Markdown==3.6
281
- markdown-it-py==2.2.0
282
- markdown2==2.4.8
283
- MarkupSafe==2.1.2
284
- matplotlib==3.7.3
285
- matplotlib-inline==0.1.6
286
- mayavi==4.8.1
287
- mc-bin-client==1.0.1
288
- mdit-py-plugins==0.3.3
289
- mdurl==0.1.2
290
- mediapipe==0.10.15
291
- menuinst @ file:///croot/menuinst_1706732933928/work
292
- mkl-fft @ file:///croot/mkl_fft_1695058164594/work
293
- mkl-random @ file:///croot/mkl_random_1695059800811/work
294
- mkl-service==2.4.0
295
- ml-collections==0.1.1
296
- ml-dtypes==0.2.0
297
- mmcv==1.7.2
298
- mmengine==0.10.4
299
- model-index==0.1.11
300
- more-itertools @ file:///croot/more-itertools_1700662129964/work
301
- MouseInfo==0.1.3
302
- moviepy==1.0.3
303
- mpmath @ file:///croot/mpmath_1690848262763/work
304
- msgpack==1.0.5
305
- multidict==6.0.4
306
- multiformats==0.2.1
307
- multiformats-config==0.2.0.post4
308
- multiprocess==0.70.14
309
- murmurhash==1.0.9
310
- mypy-extensions==1.0.0
311
- namex==0.0.8
312
- natsort==8.4.0
313
- navigator-updater @ file:///croot/navigator-updater_1713453362034/work
314
- nbformat @ file:///croot/nbformat_1694616755618/work
315
- ndindex==1.8
316
- nest-asyncio==1.5.7
317
- networkx==3.1
318
- nh3==0.2.13
319
- nibabel==5.1.0
320
- ninja==1.11.1
321
- nlpaug==1.1.11
322
- nltk==3.8.1
323
- nodeenv==1.8.0
324
- numba==0.59.1
325
- numexpr @ file:///croot/numexpr_1696515281613/work
326
- numpy==1.26.4
327
- nvidia-cublas-cu11==11.11.3.6
328
- nvidia-cublas-cu117==11.10.1.25
329
- nvidia-cublas-cu12==12.3.4.1
330
- nvidia-cuda-cupti-cu11==11.8.87
331
- nvidia-cuda-cupti-cu117==11.7.50
332
- nvidia-cuda-cupti-cu12==12.3.101
333
- nvidia-cuda-nvcc-cu11==11.8.89
334
- nvidia-cuda-nvcc-cu12==12.3.107
335
- nvidia-cuda-nvrtc-cu11==11.8.89
336
- nvidia-cuda-nvrtc-cu12==12.3.107
337
- nvidia-cuda-runtime-cu11==11.8.89
338
- nvidia-cuda-runtime-cu117==11.7.60
339
- nvidia-cuda-runtime-cu12==12.3.101
340
- nvidia-cudnn-cu11==8.7.0.84
341
- nvidia-cudnn-cu116==8.4.0.27
342
- nvidia-cudnn-cu12==9.0.0.312
343
- nvidia-cufft-cu11==10.9.0.58
344
- nvidia-cufft-cu12==11.0.12.1
345
- nvidia-curand-cu11==10.3.0.86
346
- nvidia-curand-cu12==10.3.4.107
347
- nvidia-cusolver-cu11==11.4.1.48
348
- nvidia-cusolver-cu12==11.5.4.101
349
- nvidia-cusparse-cu11==11.7.5.86
350
- nvidia-cusparse-cu12==12.2.0.103
351
- nvidia-nccl-cu11==2.19.3
352
- nvidia-nccl-cu12==2.19.3
353
- nvidia-nvjitlink-cu12==12.3.101
354
- nvidia-nvtx-cu11==11.8.86
355
- nvidia-pyindex==1.0.9
356
- oauth2client==4.1.3
357
- oauthlib==3.2.2
358
- omegaconf==2.3.0
359
- onnx==1.15.0
360
- onnx-graphsurgeon==0.5.2
361
- onnx2torch==1.5.6
362
- onnxruntime==1.16.3
363
- open_clip_torch==2.26.1
364
- openai==0.27.8
365
- opencv-contrib-python==4.6.0.66
366
- opencv-python==4.6.0
367
- opendatalab==0.0.10
368
- opendatasets==0.1.22
369
- openmim==0.3.9
370
- openxlab==0.1.1
371
- opt-einsum==3.3.0
372
- optax==0.1.5
373
- optree==0.11.0
374
- orbax-checkpoint==0.1.6
375
- ordered-set==4.1.0
376
- orjson==3.9.0
377
- oss2==2.17.0
378
- outcome==1.3.0.post0
379
- packaging @ file:///croot/packaging_1710807400464/work
380
- pandas==2.0.2
381
- panel==1.4.4
382
- param==2.1.0
383
- parameterized==0.9.0
384
- parso==0.8.3
385
- pathspec==0.11.1
386
- pathtools==0.1.2
387
- pathy==0.10.1
388
- pedalboard==0.7.4
389
- peewee==3.16.2
390
- peft==0.10.0
391
- pexpect==4.8.0
392
- pickleshare==0.7.5
393
- piexif==1.1.3
394
- Pillow==9.4.0
395
- pkce @ file:///croot/pkce_1690384816590/work
396
- pkginfo @ file:///croot/pkginfo_1679431160147/work
397
- platformdirs==3.8.0
398
- plotly==5.14.1
399
- pluggy @ file:///tmp/build/80754af9/pluggy_1648024709248/work
400
- ply==3.11
401
- polygraphy==0.49.9
402
- pooch==1.8.1
403
- portalocker==2.7.0
404
- pre-commit==3.3.1
405
- prefigure==0.0.9
406
- preshed==3.0.8
407
- proglog==0.1.10
408
- progressbar==2.5
409
- prompt-toolkit==3.0.39
410
- protobuf==4.25.3
411
- psutil==5.9.5
412
- ptyprocess==0.7.0
413
- pure-eval==0.2.2
414
- py-cpuinfo==9.0.0
415
- pyarrow==17.0.0
416
- pyasn1==0.6.0
417
- pyasn1-modules==0.3.0
418
- PyAutoGUI==0.9.54
419
- pyav==12.0.5
420
- pycocoevalcap==1.2
421
- pycocotools==2.0.6
422
- pycosat @ file:///croot/pycosat_1696536503704/work
423
- pycparser==2.21
424
- pycryptodome==3.20.0
425
- pycryptodomex==3.19.0
426
- pydantic==2.7.3
427
- pydantic_core==2.18.4
428
- pydeck==0.8.1b0
429
- pyDeprecate==0.3.2
430
- pydicom==2.3.1
431
- pydot==1.4.2
432
- pydub==0.25.1
433
- pyface==8.0.0
434
- PyGetWindow==0.0.9
435
- Pygments==2.15.1
436
- PyJWT==2.7.0
437
- pylibmc==1.6.3
438
- pyloudnorm==0.1.1
439
- pymemcache==4.0.0
440
- Pympler==1.0.1
441
- PyMsgBox==1.0.9
442
- pynndescent==0.5.12
443
- pynvml==11.5.0
444
- pyOpenSSL @ file:///croot/pyopenssl_1690223430423/work
445
- pyparsing==3.1.1
446
- pyperclip==1.9.0
447
- pyproj==3.6.0
448
- PyQt5==5.15.10
449
- PyQt5-sip @ file:///croot/pyqt-split_1698769088074/work/pyqt_sip
450
- pyre-extensions==0.0.29
451
- PyRect==0.2.0
452
- PyScreeze==1.0.1
453
- pyshp==2.3.1
454
- PySocks==1.7.1
455
- pystoi==0.4.1
456
- python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
457
- python-docx==0.8.11
458
- python-dotenv==1.0.0
459
- python-magic==0.4.27
460
- python-memcached==1.59
461
- python-multipart==0.0.9
462
- python-slugify==8.0.1
463
- python3-xlib==0.15
464
- pytorch-lantern==0.12.7
465
- pytorch-lightning==2.1.0
466
- pytorch-pretrained-biggan==0.1.1
467
- pytorch-warmup==0.1.1
468
- pytorchvideo==0.1.5
469
- pytweening==1.2.0
470
- pytz @ file:///croot/pytz_1695131579487/work
471
- pyu2f==0.1.5
472
- PyVirtualDisplay==3.0
473
- pyviz_comms==3.0.2
474
- PyWavelets==1.4.1
475
- PyYAML==6.0
476
- pyzmq==25.1.0
477
- QtPy @ file:///croot/qtpy_1700144840038/work
478
- randomname==0.2.1
479
- realesrgan==0.3.0
480
- referencing @ file:///croot/referencing_1699012038513/work
481
- regex==2023.6.3
482
- repeng @ git+https://github.com/vgel/repeng.git@c9093abddd87f865e7e2bcf4b3e556ec8813b5b2
483
- replicate==0.25.1
484
- requests==2.32.3
485
- requests-oauthlib==1.3.1
486
- requests-toolbelt @ file:///croot/requests-toolbelt_1690874004362/work
487
- resampy==0.4.3
488
- resize-right==0.0.2
489
- responses==0.18.0
490
- retry-decorator==1.1.1
491
- rfc3986==1.5.0
492
- rich==12.6.0
493
- rotary-embedding-torch==0.3.0
494
- rpds-py @ file:///croot/rpds-py_1698945930462/work
495
- rsa==4.7.2
496
- ruamel-yaml-conda @ file:///croot/ruamel_yaml_1667489728852/work
497
- ruamel.yaml @ file:///croot/ruamel.yaml_1666304550667/work
498
- ruamel.yaml.clib @ file:///croot/ruamel.yaml.clib_1666302247304/work
499
- ruff==0.4.1
500
- s2wrapper @ git+https://github.com/bfshi/scaling_on_scales@f08aec91337ae1ed6d7cc7a55441a96d51c14dd1
501
- s3fs==2024.6.0
502
- s3transfer==0.10.1
503
- sacremoses==0.0.53
504
- safetensors==0.4.1
505
- salesforce-lavis @ git+https://github.com/salesforce/LAVIS.git@4a85b17846ee62f09c40f37cc955dd33c2abec68
506
- scikit-image==0.20.0
507
- scikit-learn==1.5.1
508
- scikit-surprise==1.1.3
509
- scipy==1.11.1
510
- SecretStorage @ file:///croot/secretstorage_1678709481048/work
511
- selenium==4.29.0
512
- semantic-version==2.10.0
513
- semver @ file:///croot/semver_1709243621175/work
514
- sentencepiece==0.1.99
515
- sentry-sdk==1.25.1
516
- setproctitle==1.3.2
517
- sgm @ file:///home/ryn_mote/Misc/generative-models
518
- shapely==2.0.1
519
- shellingham==1.5.0.post1
520
- shortuuid==1.0.11
521
- SimpleITK==2.2.1
522
- sip @ file:///croot/sip_1698675935381/work
523
- six @ file:///tmp/build/80754af9/six_1644875935023/work
524
- sk-video==1.1.10
525
- smart-open==6.3.0
526
- smmap==5.0.0
527
- sniffio==1.3.0
528
- sortedcontainers==2.4.0
529
- sounddevice==0.5.0
530
- SoundFile==0.10.2
531
- soupsieve==2.4.1
532
- spaces==0.27.0
533
- spacy==3.5.3
534
- spacy-legacy==3.0.12
535
- spacy-loggers==1.0.4
536
- sqlparse==0.4.4
537
- srsly==2.4.6
538
- stable-audio-tools==0.0.16
539
- stable-fast @ https://github.com/chengzeyi/stable-fast/releases/download/v1.0.4/stable_fast-1.0.4+torch220cu118-cp310-cp310-manylinux2014_x86_64.whl#sha256=11716f733237f557bee452eee63db415b4daeff29a28d939f73fff8003f0d415
540
- stack-data==0.6.2
541
- stanza==1.5.0
542
- starlette==0.37.2
543
- streamlit==1.22.0
544
- svgwrite==1.4.3
545
- sympy @ file:///croot/sympy_1701397643339/work
546
- tables==3.9.2
547
- tabulate==0.9.0
548
- tenacity==8.2.2
549
- tensorboard==2.14.1
550
- tensorboard-data-server==0.7.2
551
- tensorboard-plugin-wit==1.8.1
552
- tensorflow==2.14.0
553
- tensorflow-addons==0.16.1
554
- tensorflow-estimator==2.14.0
555
- tensorflow-hub==0.16.1
556
- tensorflow-io-gcs-filesystem==0.32.0
557
- tensorrt==8.6.1.post1
558
- tensorrt-bindings==8.6.1
559
- tensorrt-libs==8.6.1
560
- tensorstore==0.1.39
561
- termcolor==2.3.0
562
- text-unidecode==1.3
563
- tf-estimator-nightly==2.8.0.dev2021122109
564
- tf_keras==2.16.0
565
- tgate==0.1.1
566
- thinc==8.1.10
567
- threadpoolctl==3.2.0
568
- tifffile==2023.4.12
569
- tiktoken==0.4.0
570
- timm==0.9.8
571
- tokenizers==0.20.3
572
- tomesd==0.1.3
573
- tomli==2.0.1
574
- tomlkit==0.12.0
575
- toolz==0.12.0
576
- torch==2.2.2+cu118
577
- torch-ema==0.3
578
- torch-stoi==0.2.1
579
- torchaudio==2.0.2+cu118
580
- torchdiffeq==0.2.3
581
- torchio==0.19.0
582
- torchlibrosa==0.1.0
583
- torchmetrics==0.11.4
584
- torchsde==0.2.6
585
- torchvision==0.15.2+cu118
586
- tornado @ file:///croot/tornado_1696936946304/work
587
- tqdm==4.66.5
588
- traitlets @ file:///croot/traitlets_1671143879854/work
589
- traits==6.4.1
590
- traitsui==8.0.0
591
- trampoline==0.1.2
592
- transformers==4.46.3
593
- trio==0.29.0
594
- trio-websocket==0.12.2
595
- triton==2.2.0
596
- truststore @ file:///croot/truststore_1695244293384/work
597
- typed-argument-parser==1.8.1
598
- typeguard==4.2.1
599
- typer==0.12.3
600
- types-regex==2023.6.3.1
601
- typing-inspect==0.8.0
602
- typing-validation==1.0.0.post2
603
- typing_extensions==4.12.2
604
- tzdata @ file:///croot/python-tzdata_1690578112552/work
605
- tzlocal==5.0.1
606
- uc-micro-py==1.0.2
607
- ujson @ file:///opt/conda/conda-bld/ujson_1657544923770/work
608
- umap-learn==0.5.6
609
- undetected-chromedriver==3.5.5
610
- urllib3==1.26.18
611
- uvicorn==0.29.0
612
- uvloop==0.19.0
613
- v-diffusion-pytorch==0.0.2
614
- validators==0.20.0
615
- vector-quantize-pytorch==1.9.14
616
- vtk==9.2.6
617
- wandb==0.15.4
618
- wasabi==1.1.1
619
- watchdog==3.0.0
620
- watchfiles==0.22.0
621
- wavedrom==2.0.3.post3
622
- wcwidth==0.2.6
623
- webdataset==0.2.48
624
- webencodings==0.5.1
625
- websocket-client==1.8.0
626
- websockets==11.0.3
627
- Werkzeug==2.3.4
628
- wget==3.2
629
- widgetsnbextension==4.0.7
630
- wikipedia==1.4.0
631
- wrapt==1.14.1
632
- wsproto==1.2.0
633
- x-transformers==1.26.6
634
- xformers==0.0.20
635
- xxhash==3.2.0
636
- xyzservices==2024.4.0
637
- yacs==0.1.8
638
- yapf==0.40.1
639
- yarl==1.9.2
640
- yattag==1.15.1
641
- zipp==3.16.0
642
- zstandard @ file:///croot/zstandard_1677013143055/work