Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +181 -0
- vectorstore/ruri-large/index.faiss +3 -0
- vectorstore/ruri-large/index.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.llms import LlamaCpp
|
8 |
+
|
9 |
+
|
10 |
+
REPO_ID = "WariHima/sarashina2.2-1b-instruct-v0.1-Q4_K_M-GGUF"
|
11 |
+
FILENAME = "sarashina2.2-1b-instruct-v0.1-q4_k_m.gguf"
|
12 |
+
|
13 |
+
|
14 |
+
def get_model_path():
|
15 |
+
return hf_hub_download(
|
16 |
+
repo_id=REPO_ID,
|
17 |
+
filename=FILENAME,
|
18 |
+
repo_type="model",
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
GGUF_MODEL_PATH = get_model_path()
|
23 |
+
VECTOR_DB_PATH = "./vectorstore/ruri-large"
|
24 |
+
EMBEDDING_MODEL = "cl-nagoya/ruri-large"
|
25 |
+
|
26 |
+
|
27 |
+
class RAGSystem:
|
28 |
+
def __init__(self):
|
29 |
+
self.vectorstore = None
|
30 |
+
self.qa_chain = None
|
31 |
+
self.setup_models()
|
32 |
+
|
33 |
+
def setup_models(self):
|
34 |
+
self.embeddings = HuggingFaceEmbeddings(
|
35 |
+
model_name=EMBEDDING_MODEL,
|
36 |
+
model_kwargs={"device": "cpu"},
|
37 |
+
)
|
38 |
+
|
39 |
+
try:
|
40 |
+
self.load_vectorstore()
|
41 |
+
except Exception as e:
|
42 |
+
print(f"ベクトルDBの読み込みに失敗しました: {str(e)}")
|
43 |
+
|
44 |
+
try:
|
45 |
+
self.llm = LlamaCpp(
|
46 |
+
model_path=GGUF_MODEL_PATH,
|
47 |
+
temperature=0.7,
|
48 |
+
max_tokens=512,
|
49 |
+
n_ctx=2048, # コンテキスト長
|
50 |
+
n_threads=8, # 使用するCPUスレッド数
|
51 |
+
n_gpu_layers=-1, # 可能であればGPUレイヤーを全て使用
|
52 |
+
verbose=False,
|
53 |
+
streaming=True,
|
54 |
+
model_kwargs={"f16_kv": True},
|
55 |
+
)
|
56 |
+
|
57 |
+
if self.vectorstore:
|
58 |
+
self.setup_qa_chain()
|
59 |
+
except Exception as e:
|
60 |
+
print(f"LLMの読み込みに失敗しました: {str(e)}")
|
61 |
+
|
62 |
+
def load_vectorstore(self):
|
63 |
+
if os.path.exists(VECTOR_DB_PATH):
|
64 |
+
self.vectorstore = FAISS.load_local(
|
65 |
+
VECTOR_DB_PATH,
|
66 |
+
self.embeddings,
|
67 |
+
allow_dangerous_deserialization=True,
|
68 |
+
)
|
69 |
+
if self.llm:
|
70 |
+
self.setup_qa_chain()
|
71 |
+
return True
|
72 |
+
return False
|
73 |
+
|
74 |
+
def setup_qa_chain(self):
|
75 |
+
if self.vectorstore and self.llm:
|
76 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
77 |
+
llm=self.llm,
|
78 |
+
chain_type="stuff",
|
79 |
+
retriever=self.vectorstore.as_retriever(search_kwargs={"k": 3}),
|
80 |
+
)
|
81 |
+
return True
|
82 |
+
return False
|
83 |
+
|
84 |
+
def answer_question_stream(self, question):
|
85 |
+
if not self.qa_chain:
|
86 |
+
if not self.vectorstore:
|
87 |
+
yield "ベクトルDBが読み込まれていません。"
|
88 |
+
return
|
89 |
+
if not self.llm:
|
90 |
+
yield "LLMモデルが読み込まれていません。"
|
91 |
+
return
|
92 |
+
yield "QAチェーンの初期化に失敗しました。"
|
93 |
+
return
|
94 |
+
|
95 |
+
try:
|
96 |
+
docs = self.vectorstore.similarity_search(question, k=3)
|
97 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
98 |
+
|
99 |
+
prompt = f"""与えられた文書を用いて、質問に対する適切な応答を書きなさい。
|
100 |
+
文書: {context}
|
101 |
+
質問: {question}
|
102 |
+
応答: """
|
103 |
+
|
104 |
+
response = ""
|
105 |
+
for chunk in self.llm._stream(prompt):
|
106 |
+
if isinstance(chunk, str):
|
107 |
+
response += chunk
|
108 |
+
else:
|
109 |
+
response += chunk.text
|
110 |
+
yield response
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
yield f"回答生成中にエラーが発生しました: {str(e)}"
|
114 |
+
|
115 |
+
def get_system_status(self):
|
116 |
+
status = list()
|
117 |
+
if os.path.exists(GGUF_MODEL_PATH):
|
118 |
+
model_size = os.path.getsize(GGUF_MODEL_PATH) / (1024 * 1024 * 1024)
|
119 |
+
status.append(
|
120 |
+
f"✅ LLMモデル: {os.path.basename(GGUF_MODEL_PATH)} ({model_size:.2f} GB)"
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
status.append(f"❌ LLMモデル: {GGUF_MODEL_PATH} が見つかりません")
|
124 |
+
|
125 |
+
if os.path.exists(VECTOR_DB_PATH):
|
126 |
+
status.append(f"✅ ベクトルDB: {VECTOR_DB_PATH}")
|
127 |
+
else:
|
128 |
+
status.append(f"❌ ベクトルDB: {VECTOR_DB_PATH} が見つかりません")
|
129 |
+
|
130 |
+
status.append(f"✅ 埋め込みモデル: {EMBEDDING_MODEL}")
|
131 |
+
|
132 |
+
if self.qa_chain:
|
133 |
+
status.append("✅ RAGシステム: 準備完了")
|
134 |
+
else:
|
135 |
+
status.append("❌ RAGシステム: 初期化されていません")
|
136 |
+
|
137 |
+
return "\n".join(status)
|
138 |
+
|
139 |
+
|
140 |
+
rag_system = RAGSystem()
|
141 |
+
|
142 |
+
with gr.Blocks(title="RAGデモアプリ") as demo:
|
143 |
+
gr.Markdown("# 🎇 Sake RAG デモアプリ")
|
144 |
+
gr.Markdown(
|
145 |
+
"醸造協会誌5年分のデータをベクトルDBとして保持した1B級の小型言語モデルです"
|
146 |
+
)
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column(scale=1):
|
150 |
+
refresh_button = gr.Button("システム状態を更新", variant="secondary")
|
151 |
+
status_output = gr.Textbox(
|
152 |
+
label="システム状態",
|
153 |
+
value=rag_system.get_system_status(),
|
154 |
+
interactive=False,
|
155 |
+
lines=5,
|
156 |
+
)
|
157 |
+
|
158 |
+
with gr.Column(scale=2):
|
159 |
+
question_input = gr.Textbox(
|
160 |
+
label="質問を入力してください",
|
161 |
+
placeholder="質問を入力してください",
|
162 |
+
lines=2,
|
163 |
+
)
|
164 |
+
submit_button = gr.Button("質問する", variant="primary")
|
165 |
+
answer_output = gr.Textbox(label="回答", interactive=False, lines=10)
|
166 |
+
|
167 |
+
refresh_button.click(
|
168 |
+
fn=rag_system.get_system_status,
|
169 |
+
inputs=[],
|
170 |
+
outputs=[status_output],
|
171 |
+
)
|
172 |
+
|
173 |
+
submit_button.click(
|
174 |
+
fn=rag_system.answer_question_stream,
|
175 |
+
inputs=[question_input],
|
176 |
+
outputs=[answer_output],
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
demo.launch()
|
vectorstore/ruri-large/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a243b4c3b811a8f55c2a9f05b9336e985969044c2fa0e9e937a6ab1d04f834c9
|
3 |
+
size 7405613
|
vectorstore/ruri-large/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:354d8ad0e8007268a0e1e0a19b36865e80093498596091a47813ef8b97539afb
|
3 |
+
size 826595
|