|
import gradio as gr |
|
import spaces |
|
from PIL import Image |
|
import requests |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
import torch |
|
import subprocess |
|
from io import BytesIO |
|
|
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
|
|
model_id = "microsoft/Phi-3.5-vision-instruct" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
use_flash_attention_2=False, |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16) |
|
|
|
@spaces.GPU(duration=120) |
|
def solve_math_problem(image): |
|
|
|
model.to('cuda') |
|
|
|
|
|
messages = [ |
|
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."}, |
|
] |
|
prompt = processor.tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
|
|
inputs = processor(prompt, image, return_tensors="pt").to("cuda") |
|
|
|
|
|
generation_args = { |
|
"max_new_tokens": 1000, |
|
"temperature": 0.2, |
|
"do_sample": True, |
|
} |
|
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) |
|
|
|
|
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] |
|
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
|
|
model.to('cpu') |
|
return response |
|
|
|
|
|
def load_image_from_url(url): |
|
response = requests.get(url) |
|
img = Image.open(BytesIO(response.content)) |
|
return img |
|
|
|
|
|
custom_css = """ |
|
<style> |
|
body { |
|
background: linear-gradient(135deg, #1a1c2c, #4a4e69, #9a8c98); |
|
font-family: 'Arial', sans-serif; |
|
color: #f2e9e4; |
|
margin: 0; |
|
padding: 0; |
|
min-height: 100vh; |
|
} |
|
#app-header { |
|
text-align: center; |
|
background: rgba(255, 255, 255, 0.1); |
|
padding: 30px; |
|
border-radius: 20px; |
|
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.3); |
|
position: relative; |
|
overflow: hidden; |
|
margin: 20px auto; |
|
max-width: 800px; |
|
} |
|
#app-header::before { |
|
content: ""; |
|
position: absolute; |
|
top: -50%; |
|
left: -50%; |
|
width: 200%; |
|
height: 200%; |
|
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%); |
|
animation: shimmer 15s infinite linear; |
|
} |
|
@keyframes shimmer { |
|
0% { transform: rotate(0deg); } |
|
100% { transform: rotate(360deg); } |
|
} |
|
#app-header h1 { |
|
color: #f2e9e4; |
|
font-size: 2.5em; |
|
margin-bottom: 15px; |
|
text-shadow: 2px 2px 4px rgba(0,0,0,0.5); |
|
} |
|
#app-header p { |
|
font-size: 1.2em; |
|
color: #c9ada7; |
|
} |
|
.concept-container { |
|
display: flex; |
|
justify-content: center; |
|
gap: 20px; |
|
margin-top: 30px; |
|
flex-wrap: wrap; |
|
} |
|
.concept { |
|
position: relative; |
|
transition: transform 0.3s, box-shadow 0.3s; |
|
border-radius: 15px; |
|
overflow: hidden; |
|
background: rgba(255, 255, 255, 0.1); |
|
box-shadow: 0 5px 15px rgba(0,0,0,0.2); |
|
width: 150px; |
|
height: 150px; |
|
display: flex; |
|
flex-direction: column; |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
.concept:hover { |
|
transform: translateY(-10px) rotate(3deg); |
|
box-shadow: 0 15px 30px rgba(0,0,0,0.4); |
|
} |
|
.concept-emoji { |
|
font-size: 60px; |
|
margin-bottom: 10px; |
|
} |
|
.concept-description { |
|
background-color: rgba(110, 72, 170, 0.8); |
|
color: white; |
|
padding: 10px; |
|
font-size: 0.9em; |
|
text-align: center; |
|
width: 100%; |
|
position: absolute; |
|
bottom: 0; |
|
} |
|
.artifact { |
|
position: absolute; |
|
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%); |
|
border-radius: 50%; |
|
opacity: 0.5; |
|
pointer-events: none; |
|
} |
|
.artifact.large { |
|
width: 400px; |
|
height: 400px; |
|
top: -100px; |
|
left: -200px; |
|
animation: float 20s infinite ease-in-out; |
|
} |
|
.artifact.medium { |
|
width: 300px; |
|
height: 300px; |
|
bottom: -150px; |
|
right: -150px; |
|
animation: float 15s infinite ease-in-out reverse; |
|
} |
|
.artifact.small { |
|
width: 150px; |
|
height: 150px; |
|
top: 50%; |
|
left: 50%; |
|
transform: translate(-50%, -50%); |
|
animation: pulse 5s infinite alternate; |
|
} |
|
@keyframes float { |
|
0%, 100% { transform: translateY(0) rotate(0deg); } |
|
50% { transform: translateY(-20px) rotate(10deg); } |
|
} |
|
@keyframes pulse { |
|
0% { transform: translate(-50%, -50%) scale(1); opacity: 0.5; } |
|
100% { transform: translate(-50%, -50%) scale(1.1); opacity: 0.8; } |
|
} |
|
/* Gradio component styling */ |
|
.gr-box { |
|
background-color: rgba(255, 255, 255, 0.1) !important; |
|
border: 1px solid rgba(255, 255, 255, 0.2) !important; |
|
} |
|
.gr-input, .gr-button { |
|
background-color: rgba(255, 255, 255, 0.1) !important; |
|
color: #f2e9e4 !important; |
|
border: 1px solid rgba(255, 255, 255, 0.2) !important; |
|
} |
|
.gr-button:hover { |
|
background-color: rgba(255, 255, 255, 0.2) !important; |
|
} |
|
.gr-form { |
|
background-color: transparent !important; |
|
} |
|
</style> |
|
""" |
|
|
|
|
|
custom_html = """ |
|
<div id="app-header"> |
|
<div class="artifact large"></div> |
|
<div class="artifact medium"></div> |
|
<div class="artifact small"></div> |
|
<h1>Visual Math Problem Solver</h1> |
|
<p>Upload an image of a math problem, and I'll try to solve it step by step!</p> |
|
<div class="concept-container"> |
|
<div class="concept"> |
|
<div class="concept-emoji">๐งฎ</div> |
|
<div class="concept-description">Problem Solving</div> |
|
</div> |
|
<div class="concept"> |
|
<div class="concept-emoji">๐ท</div> |
|
<div class="concept-description">Image Recognition</div> |
|
</div> |
|
<div class="concept"> |
|
<div class="concept-emoji">๐ค</div> |
|
<div class="concept-description">AI-Powered</div> |
|
</div> |
|
<div class="concept"> |
|
<div class="concept-emoji">๐</div> |
|
<div class="concept-description">Step-by-Step</div> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
|
|
|
|
|
|
with gr.Blocks(css=custom_css) as iface: |
|
gr.HTML(custom_html) |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
input_image = gr.Image(type="pil", label="Upload Math Problem Image") |
|
submit_btn = gr.Button("Solve Problem") |
|
with gr.Column(scale=1): |
|
output_text = gr.Textbox(label="Solution", lines=10) |
|
|
|
submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text) |
|
|
|
gr.Examples( |
|
examples=[ |
|
"https://i.imgur.com/2Gwd3bN.jpg", |
|
"https://i.imgur.com/wPw5YtB.jpg" |
|
], |
|
inputs=input_image, |
|
outputs=output_text, |
|
fn=lambda url: solve_math_problem(load_image_from_url(url)), |
|
cache_examples=True, |
|
) |
|
|
|
|
|
iface.launch() |