Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load the model and processor
|
9 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_id,
|
12 |
+
trust_remote_code=True,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
)
|
15 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
16 |
+
|
17 |
+
@spaces.GPU(duration=120) # Adjust the duration as needed
|
18 |
+
def solve_math_problem(image):
|
19 |
+
# Move model to GPU for this function call
|
20 |
+
model.to('cuda')
|
21 |
+
|
22 |
+
# Prepare the input
|
23 |
+
messages = [
|
24 |
+
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
|
25 |
+
]
|
26 |
+
prompt = processor.tokenizer.apply_chat_template(
|
27 |
+
messages,
|
28 |
+
tokenize=False,
|
29 |
+
add_generation_prompt=True
|
30 |
+
)
|
31 |
+
|
32 |
+
# Process the input
|
33 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
34 |
+
|
35 |
+
# Generate the response
|
36 |
+
generation_args = {
|
37 |
+
"max_new_tokens": 1000,
|
38 |
+
"temperature": 0.2,
|
39 |
+
"do_sample": True,
|
40 |
+
}
|
41 |
+
generate_ids = model.generate(**inputs,
|
42 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
43 |
+
**generation_args
|
44 |
+
)
|
45 |
+
|
46 |
+
# Decode the response
|
47 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
48 |
+
response = processor.batch_decode(generate_ids,
|
49 |
+
skip_special_tokens=True,
|
50 |
+
clean_up_tokenization_spaces=False
|
51 |
+
)[0]
|
52 |
+
|
53 |
+
# Move model back to CPU to free up GPU memory
|
54 |
+
model.to('cpu')
|
55 |
+
|
56 |
+
return response
|
57 |
+
|
58 |
+
# Create the Gradio interface
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=solve_math_problem,
|
61 |
+
inputs=gr.Image(type="pil"),
|
62 |
+
outputs="text",
|
63 |
+
title="Visual Math Problem Solver",
|
64 |
+
description="Upload an image of a math problem, and I'll try to solve it step by step!",
|
65 |
+
examples=[
|
66 |
+
["example_math_problem1.jpg"],
|
67 |
+
["example_math_problem2.jpg"]
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the app
|
72 |
+
iface.launch()
|