densediffusion / app.py
salexashenko's picture
token
762caee
import gradio as gr
import numpy as np
import torch
import requests
import random
import os
from tqdm.auto import tqdm
from datetime import datetime
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from diffusers import DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
import torch.nn.functional as F
from utils import preprocess_mask, process_sketch, process_prompts
MAX_COLORS = 12
HF_TOKEN = os.environ.get("HF_TOKEN")
#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
#################################################
#################################################
global sreg, creg, sizereg, COUNT, creg_maps, sreg_maps, pipe, text_cond
sreg = 0
creg = 0
sizereg = 0
COUNT = 0
reg_sizes = {}
creg_maps = {}
sreg_maps = {}
text_cond = 0
device="cuda"
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
cache_dir='./models/diffusers/',
use_auth_token=HF_TOKEN).to(device)
pipe.safety_checker = lambda images, clip_input: (images, False)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(50)
timesteps = pipe.scheduler.timesteps
#################################################
#################################################
def mod_forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length)
query = self.to_q(hidden_states)
query = self.head_to_batch_dim(query)
global text_cond
context_states = text_cond if encoder_hidden_states is not None else hidden_states
key = self.to_k(context_states)
value = self.to_v(context_states)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
global sreg, creg, COUNT, creg_maps, sreg_maps, reg_sizes
COUNT += 1
if COUNT/32 < 50*0.3:
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
sim = torch.baddbmm(torch.empty(query.shape[0], query.shape[1], key.shape[1],
dtype=query.dtype, device=query.device),
query, key.transpose(-1, -2), beta=0, alpha=self.scale)
treg = torch.pow(timesteps[COUNT//32]/1000, 5)
## reg at self-attn
if encoder_hidden_states is None:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = sreg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*sreg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*sreg*treg*(sim[int(sim.size(0)/2):]-min_value)
## reg at cross-attn
else:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = creg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*creg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*creg*treg*(sim[int(sim.size(0)/2):]-min_value)
attention_probs = sim.softmax(dim=-1)
attention_probs = attention_probs.to(dtype)
else:
attention_probs = self.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
for _module in pipe.unet.modules():
if _module.__class__.__name__ == "CrossAttention":
_module.__class__.__call__ = mod_forward
#################################################
#################################################
def process_generation(binary_matrixes, seed, creg_, sreg_, sizereg_, bsz, master_prompt, *prompts):
global creg, sreg, sizereg
creg, sreg, sizereg = creg_, sreg_, sizereg_
clipped_prompts = prompts[:len(binary_matrixes)]
prompts = [master_prompt] + list(clipped_prompts)
layouts = torch.cat([preprocess_mask(mask_, 512 // 8, 512 // 8, device) for mask_ in binary_matrixes])
text_input = pipe.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False,
max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
cond_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = pipe.tokenizer([""]*bsz, padding="max_length", max_length=pipe.tokenizer.model_max_length,
truncation=True, return_tensors="pt")
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
###########################
###### prep for sreg ######
###########################
global sreg_maps, reg_sizes
sreg_maps = {}
reg_sizes = {}
for r in range(4):
layouts_s = F.interpolate(layouts,(np.power(2,r+3),np.power(2,r+3)),mode='nearest')
layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)
reg_sizes[np.power(2,(r+3)*2)] = 1-sizereg*layouts_s.sum(-1, keepdim=True)/(np.power(2,(r+3)*2))
sreg_maps[np.power(2,(r+3)*2)] = layouts_s
###########################
###### prep for creg ######
###########################
pww_maps = torch.zeros(1,77,64,64).to(device)
for i in range(1,len(prompts)):
wlen = text_input['length'][i] - 2
widx = text_input['input_ids'][i][1:1+wlen]
for j in range(77):
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
pww_maps[:,j:j+wlen,:,:] = layouts[i-1:i]
cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
break
global creg_maps
creg_maps = {}
for r in range(4):
layout_c = F.interpolate(pww_maps,(np.power(2,r+3),np.power(2,r+3)),mode='nearest').view(1,77,-1).permute(0,2,1).repeat(bsz,1,1)
creg_maps[np.power(2,(r+3)*2)] = layout_c
###########################
#### prep for text_emb ####
###########################
global text_cond
text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])
global COUNT
COUNT = 0
if seed == -1:
latents = torch.randn(bsz,4,64,64).to(device)
else:
latents = torch.randn(bsz,4,64,64, generator=torch.Generator().manual_seed(seed)).to(device)
image = pipe(prompts[:1]*bsz, latents=latents).images
return(image)
#################################################
#################################################
### define the interface
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
gr.Markdown('''## DenseDiffusion: Dense Text-to-Image Generation with Attention Modulation''')
gr.Markdown('''
#### 😺 Instruction to generate images 😺
(1) Sketch the layout of the image.
(2) Label each segment with text description.
(3) Adjust the text, which is the integration of segments separated by commas, keeping in mind that the sentence should include every segments. (Default sentence works as well, but using it might be leading to the genration of less pleasing images.)
(4) Check the generated images, and tune the hyperparameters if needed.
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - w<sup>c</sup> : The degree of attention modulation at cross-attention layers.
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - w<sup>s</sup> : The degree of attention modulation at self-attention layers.
''')
with gr.Row():
with gr.Box(elem_id="main-image"):
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
button_run = gr.Button("(1) I've finished my sketch ! 😺", elem_id="main_button", interactive=True)
prompts = []
colors = []
color_row = [None] * MAX_COLORS
with gr.Column(visible=False) as post_sketch:
for n in range(MAX_COLORS):
if n == 0 :
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB").style(width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the background (white region)", value=""))
else:
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB").style(width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the segment "+str(n)))
get_genprompt_run = gr.Button("(2) I've finished segment labeling ! 😺", elem_id="prompt_button", interactive=True)
with gr.Column(visible=False) as gen_prompt_vis:
general_prompt = gr.Textbox(value='', label="(3) Textual Description for the entire image", interactive=True)
with gr.Accordion("(4) Tune the hyperparameters", open=False):
creg_ = gr.Slider(label=" w\u1D9C (The degree of attention modulation at cross-attention layers) ", minimum=0, maximum=2., value=1.0, step=0.1)
sreg_ = gr.Slider(label=" w \u02E2 (The degree of attention modulation at self-attention layers) ", minimum=0, maximum=2., value=0.3, step=0.1)
sizereg_ = gr.Slider(label="The degree of mask-area adaptive adjustment", minimum=0, maximum=1., value=1., step=0.1)
bsz_ = gr.Slider(label="Number of Samples to generate", minimum=1, maximum=4, value=4, step=1)
seed_ = gr.Slider(label="Random Seed", minimum=-1, maximum=999999999, value=-1, step=1)
final_run_btn = gr.Button("Generate ! 😺")
with gr.Column():
out_image = gr.Gallery(label="Result", ).style(grid=2, height='auto')
button_run.click(process_sketch, inputs=[canvas_data], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False)
get_genprompt_run.click(process_prompts, inputs=[binary_matrixes, *prompts], outputs=[gen_prompt_vis, general_prompt], queue=False)
final_run_btn.click(process_generation, inputs=[binary_matrixes, seed_, creg_, sreg_, sizereg_, bsz_, general_prompt, *prompts], outputs=out_image)
demo.load(None, None, None, _js=load_js)
demo.launch()