Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,14 @@
|
|
5 |
import streamlit as st
|
6 |
import requests
|
7 |
from bs4 import BeautifulSoup
|
8 |
-
from langchain.
|
9 |
-
from langchain.
|
10 |
-
from langchain.vectorstores import DocArrayInMemorySearch #document index provided by Docarray that stores documents in memory.
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
|
|
|
|
|
13 |
|
14 |
#import vertexai
|
15 |
#from langchain.llms import VertexAI
|
@@ -52,11 +55,21 @@ def create_langchain_index(input_text):
|
|
52 |
print("--indexing---")
|
53 |
get_text(input_text)
|
54 |
loader = TextLoader("text\\temp.txt", encoding='utf-8')
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# @st.cache_resource
|
62 |
# def get_basic_page_details(input_text,summary_query,tweet_query,ln_query):
|
|
|
5 |
import streamlit as st
|
6 |
import requests
|
7 |
from bs4 import BeautifulSoup
|
8 |
+
#from langchain.indexes import VectorstoreIndexCreator #Logic for creating indexes.
|
9 |
+
#from langchain.vectorstores import DocArrayInMemorySearch #document index provided by Docarray that stores documents in memory.
|
|
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
+
from langchain_chroma import Chroma
|
13 |
+
from langchain_community.document_loaders import TextLoader
|
14 |
+
from langchain_community.embeddings.sentence_transformer import (SentenceTransformerEmbeddings,)
|
15 |
+
from langchain_text_splitters import CharacterTextSplitter
|
16 |
|
17 |
#import vertexai
|
18 |
#from langchain.llms import VertexAI
|
|
|
55 |
print("--indexing---")
|
56 |
get_text(input_text)
|
57 |
loader = TextLoader("text\\temp.txt", encoding='utf-8')
|
58 |
+
documents = loader.load()
|
59 |
+
# split it into chunks
|
60 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
61 |
+
docs = text_splitter.split_documents(documents)
|
62 |
+
print(docs)
|
63 |
+
# create the open-source embedding function
|
64 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
65 |
+
# load it into Chroma
|
66 |
+
db = Chroma.from_documents(docs, embeddings)
|
67 |
+
persist_directory = "chroma_db"
|
68 |
+
vectordb = Chroma.from_documents(
|
69 |
+
documents=docs, embedding=embeddings, persist_directory=persist_directory
|
70 |
+
)
|
71 |
+
new_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
72 |
+
return new_db
|
73 |
|
74 |
# @st.cache_resource
|
75 |
# def get_basic_page_details(input_text,summary_query,tweet_query,ln_query):
|