Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- Dockerfile +24 -0
- app/config.py +12 -0
- app/database/mongodb.py +39 -0
- app/main.py +40 -0
- app/rag/document_processor.py +40 -0
- app/rag/retriever.py +124 -0
- app/utils/pdf_loader.py +32 -0
- requirements.txt +15 -0
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
git \
|
| 8 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Copy requirements first to leverage Docker cache
|
| 11 |
+
COPY requirements.txt .
|
| 12 |
+
|
| 13 |
+
# Install dependencies including CPU-only PyTorch
|
| 14 |
+
RUN pip install --no-cache-dir -r requirements.txt \
|
| 15 |
+
&& pip install torch --index-url https://download.pytorch.org/whl/cpu
|
| 16 |
+
|
| 17 |
+
# Copy application code
|
| 18 |
+
COPY . .
|
| 19 |
+
|
| 20 |
+
# Expose port
|
| 21 |
+
EXPOSE 7860
|
| 22 |
+
|
| 23 |
+
# Run the application
|
| 24 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app/config.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic_settings import BaseSettings
|
| 2 |
+
|
| 3 |
+
class Settings(BaseSettings):
|
| 4 |
+
MONGODB_URL: str
|
| 5 |
+
COLLECTION_NAME: str = "documents"
|
| 6 |
+
DATABASE_NAME: str = "ragbot"
|
| 7 |
+
HUGGINGFACE_TOKEN: str
|
| 8 |
+
|
| 9 |
+
class Config:
|
| 10 |
+
env_file = ".env"
|
| 11 |
+
|
| 12 |
+
settings = Settings()
|
app/database/mongodb.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from motor.motor_asyncio import AsyncIOMotorClient
|
| 2 |
+
from ..config import settings
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
class MongoDB:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
self.client = None
|
| 8 |
+
self.db = None
|
| 9 |
+
|
| 10 |
+
async def connect(self):
|
| 11 |
+
self.client = AsyncIOMotorClient(settings.MONGODB_URL)
|
| 12 |
+
self.db = self.client[settings.DATABASE_NAME]
|
| 13 |
+
|
| 14 |
+
# Create text and vector indexes
|
| 15 |
+
collection = self.db[settings.COLLECTION_NAME]
|
| 16 |
+
await collection.create_index([("content", "text")])
|
| 17 |
+
await collection.create_index([("embeddings", "2dsphere")])
|
| 18 |
+
|
| 19 |
+
async def close(self):
|
| 20 |
+
if self.client:
|
| 21 |
+
self.client.close()
|
| 22 |
+
|
| 23 |
+
async def store_document(self, document_data):
|
| 24 |
+
collection = self.db[settings.COLLECTION_NAME]
|
| 25 |
+
result = await collection.insert_one(document_data)
|
| 26 |
+
return result.inserted_id
|
| 27 |
+
|
| 28 |
+
async def search_documents(self, query, limit=5):
|
| 29 |
+
collection = self.db[settings.COLLECTION_NAME]
|
| 30 |
+
|
| 31 |
+
# Combine text and vector search
|
| 32 |
+
text_results = collection.find(
|
| 33 |
+
{"$text": {"$search": query}},
|
| 34 |
+
{"score": {"$meta": "textScore"}}
|
| 35 |
+
).sort([("score", {"$meta": "textScore"})]).limit(limit)
|
| 36 |
+
|
| 37 |
+
return await text_results.to_list(length=None)
|
| 38 |
+
|
| 39 |
+
db = MongoDB()
|
app/main.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from contextlib import asynccontextmanager
|
| 2 |
+
from fastapi import FastAPI, UploadFile, File
|
| 3 |
+
from .database.mongodb import db
|
| 4 |
+
from .rag.document_processor import DocumentProcessor
|
| 5 |
+
from .rag.retriever import RAGRetriever
|
| 6 |
+
|
| 7 |
+
@asynccontextmanager
|
| 8 |
+
async def lifespan(app: FastAPI):
|
| 9 |
+
# Startup
|
| 10 |
+
await db.connect()
|
| 11 |
+
yield
|
| 12 |
+
# Shutdown
|
| 13 |
+
await db.close()
|
| 14 |
+
|
| 15 |
+
app = FastAPI(
|
| 16 |
+
title="RAG Chatbot",
|
| 17 |
+
description="A RAG-based chatbot using DeepSeek model",
|
| 18 |
+
version="1.0.0"
|
| 19 |
+
)
|
| 20 |
+
document_processor = DocumentProcessor()
|
| 21 |
+
rag_retriever = RAGRetriever()
|
| 22 |
+
|
| 23 |
+
@app.post("/upload-pdf")
|
| 24 |
+
async def upload_pdf(file: UploadFile = File(...)):
|
| 25 |
+
content = await file.read()
|
| 26 |
+
await document_processor.process_pdf(content)
|
| 27 |
+
return {"message": "PDF processed successfully"}
|
| 28 |
+
|
| 29 |
+
@app.post("/chat")
|
| 30 |
+
async def chat(query: str):
|
| 31 |
+
response = await rag_retriever.get_response(query)
|
| 32 |
+
return {
|
| 33 |
+
"reasoning": response["reasoning"],
|
| 34 |
+
"answer": response["answer"],
|
| 35 |
+
"context_used": response["context_used"]
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
+
import uvicorn
|
| 40 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
app/rag/document_processor.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dspy
|
| 2 |
+
from typing import List
|
| 3 |
+
from ..utils.pdf_loader import PDFLoader
|
| 4 |
+
from ..database.mongodb import db
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
|
| 7 |
+
class DocumentProcessor:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.pdf_loader = PDFLoader()
|
| 10 |
+
self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 11 |
+
|
| 12 |
+
def generate_embeddings(self, text: str):
|
| 13 |
+
return self.encoder.encode(text).tolist()
|
| 14 |
+
|
| 15 |
+
async def process_pdf(self, file_content: bytes):
|
| 16 |
+
# Extract text from PDF
|
| 17 |
+
text_content = self.pdf_loader.load_pdf(file_content)
|
| 18 |
+
|
| 19 |
+
# Process each page with improved chunking
|
| 20 |
+
for page_num, page_text in enumerate(text_content):
|
| 21 |
+
chunks = self.pdf_loader.chunk_text(
|
| 22 |
+
page_text,
|
| 23 |
+
chunk_size=512, # Smaller chunks for better retrieval
|
| 24 |
+
overlap=50 # Add overlap between chunks
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Store chunks with embeddings in MongoDB
|
| 28 |
+
for chunk_num, chunk in enumerate(chunks):
|
| 29 |
+
document_data = {
|
| 30 |
+
"page_number": page_num,
|
| 31 |
+
"chunk_number": chunk_num,
|
| 32 |
+
"content": chunk,
|
| 33 |
+
"embeddings": self.generate_embeddings(chunk),
|
| 34 |
+
"metadata": {
|
| 35 |
+
"chunk_length": len(chunk),
|
| 36 |
+
"position": chunk_num,
|
| 37 |
+
"total_chunks": len(chunks)
|
| 38 |
+
}
|
| 39 |
+
}
|
| 40 |
+
await db.store_document(document_data)
|
app/rag/retriever.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dspy
|
| 2 |
+
from typing import List
|
| 3 |
+
from ..database.mongodb import db
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import torch
|
| 6 |
+
from ..config import settings
|
| 7 |
+
|
| 8 |
+
class RAGRetriever:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
# Initialize DeepSeek model and tokenizer with CPU optimizations
|
| 11 |
+
self.model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 13 |
+
self.model_name,
|
| 14 |
+
token=settings.HUGGINGFACE_TOKEN
|
| 15 |
+
)
|
| 16 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
self.model_name,
|
| 18 |
+
token=settings.HUGGINGFACE_TOKEN,
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
low_cpu_mem_usage=True,
|
| 21 |
+
device_map="cpu"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Configure DSPy with custom LLM
|
| 25 |
+
class DeepSeekLLM(dspy.LM):
|
| 26 |
+
def __init__(self, model, tokenizer):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.model = model
|
| 29 |
+
self.tokenizer = tokenizer
|
| 30 |
+
|
| 31 |
+
def basic_generate(self, prompt, **kwargs):
|
| 32 |
+
inputs = self.tokenizer(
|
| 33 |
+
prompt,
|
| 34 |
+
return_tensors="pt",
|
| 35 |
+
truncation=True,
|
| 36 |
+
max_length=1024
|
| 37 |
+
)
|
| 38 |
+
with torch.inference_mode(): # More memory efficient than no_grad
|
| 39 |
+
outputs = self.model.generate(
|
| 40 |
+
inputs.input_ids,
|
| 41 |
+
max_length=256, # Reduced for CPU
|
| 42 |
+
temperature=0.7,
|
| 43 |
+
do_sample=True,
|
| 44 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 45 |
+
num_beams=1, # No beam search for faster inference
|
| 46 |
+
use_cache=True
|
| 47 |
+
)
|
| 48 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 49 |
+
|
| 50 |
+
self.lm = DeepSeekLLM(self.model, self.tokenizer)
|
| 51 |
+
dspy.settings.configure(lm=self.lm)
|
| 52 |
+
|
| 53 |
+
# Define RAG program
|
| 54 |
+
class RAGProgram(dspy.Module):
|
| 55 |
+
def __init__(self):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.retrieve = dspy.Retrieve(k=5)
|
| 58 |
+
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
|
| 59 |
+
|
| 60 |
+
def forward(self, question):
|
| 61 |
+
context = self.retrieve(question).passages
|
| 62 |
+
prediction = self.generate_answer(context=context, question=question)
|
| 63 |
+
return prediction.answer
|
| 64 |
+
|
| 65 |
+
self.rag_program = RAGProgram()
|
| 66 |
+
|
| 67 |
+
# Configure prompt template
|
| 68 |
+
self.template = """
|
| 69 |
+
Based on the following context, please answer the question accurately.
|
| 70 |
+
If the answer cannot be found in the context, say "I cannot answer based on the provided context."
|
| 71 |
+
|
| 72 |
+
Context: {context}
|
| 73 |
+
|
| 74 |
+
Question: {question}
|
| 75 |
+
|
| 76 |
+
Let's solve this step by step:
|
| 77 |
+
1) First, let's identify the key information from the context
|
| 78 |
+
2) Then, analyze how it relates to the question
|
| 79 |
+
3) Finally, provide a clear answer
|
| 80 |
+
|
| 81 |
+
Please format your response as:
|
| 82 |
+
Reasoning:
|
| 83 |
+
[Your step-by-step reasoning here]
|
| 84 |
+
|
| 85 |
+
Final Answer:
|
| 86 |
+
[Your concise answer here]
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
async def get_response(self, query: str) -> dict:
|
| 90 |
+
try:
|
| 91 |
+
# Get relevant documents from MongoDB
|
| 92 |
+
docs = await db.search_documents(query)
|
| 93 |
+
context = [doc['content'] for doc in docs]
|
| 94 |
+
|
| 95 |
+
# Prepare prompt
|
| 96 |
+
prompt = self.template.format(
|
| 97 |
+
context='\n'.join(context[:3]),
|
| 98 |
+
question=query
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Generate response using RAG program
|
| 102 |
+
raw_response = self.rag_program(prompt)
|
| 103 |
+
|
| 104 |
+
# Parse the response to separate reasoning and answer
|
| 105 |
+
try:
|
| 106 |
+
reasoning_part = raw_response.split("Final Answer:")[0].replace("Reasoning:", "").strip()
|
| 107 |
+
answer_part = raw_response.split("Final Answer:")[1].strip()
|
| 108 |
+
except:
|
| 109 |
+
# Fallback if response format is unexpected
|
| 110 |
+
reasoning_part = "Could not extract reasoning"
|
| 111 |
+
answer_part = raw_response
|
| 112 |
+
|
| 113 |
+
return {
|
| 114 |
+
"reasoning": reasoning_part,
|
| 115 |
+
"answer": answer_part,
|
| 116 |
+
"context_used": context[:3] # Include used context for transparency
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
except Exception as e:
|
| 120 |
+
return {
|
| 121 |
+
"reasoning": "An error occurred during processing",
|
| 122 |
+
"answer": f"Error: {str(e)}",
|
| 123 |
+
"context_used": []
|
| 124 |
+
}
|
app/utils/pdf_loader.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import PyPDF2
|
| 2 |
+
from typing import List
|
| 3 |
+
import io
|
| 4 |
+
|
| 5 |
+
class PDFLoader:
|
| 6 |
+
@staticmethod
|
| 7 |
+
def load_pdf(file_content: bytes) -> List[str]:
|
| 8 |
+
pdf_file = io.BytesIO(file_content)
|
| 9 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 10 |
+
|
| 11 |
+
text_content = []
|
| 12 |
+
for page in pdf_reader.pages:
|
| 13 |
+
text_content.append(page.extract_text())
|
| 14 |
+
|
| 15 |
+
return text_content
|
| 16 |
+
|
| 17 |
+
@staticmethod
|
| 18 |
+
def chunk_text(text: str, chunk_size: int = 1000) -> List[str]:
|
| 19 |
+
chunks = []
|
| 20 |
+
current_chunk = ""
|
| 21 |
+
|
| 22 |
+
for sentence in text.split(". "):
|
| 23 |
+
if len(current_chunk) + len(sentence) <= chunk_size:
|
| 24 |
+
current_chunk += sentence + ". "
|
| 25 |
+
else:
|
| 26 |
+
chunks.append(current_chunk)
|
| 27 |
+
current_chunk = sentence + ". "
|
| 28 |
+
|
| 29 |
+
if current_chunk:
|
| 30 |
+
chunks.append(current_chunk)
|
| 31 |
+
|
| 32 |
+
return chunks
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
motor
|
| 4 |
+
pymongo
|
| 5 |
+
python-multipart
|
| 6 |
+
PyPDF2
|
| 7 |
+
dspy-ai
|
| 8 |
+
pydantic
|
| 9 |
+
pydantic-settings
|
| 10 |
+
python-dotenv
|
| 11 |
+
sentence-transformers
|
| 12 |
+
numpy
|
| 13 |
+
transformers
|
| 14 |
+
cloudpickle
|
| 15 |
+
accelerate>=0.26.0
|