import os import requests import torch from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM class RemoteModelProxy: def __init__(self, model_id): self.model_id = model_id self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) # Load the configuration and remove the quantization configuration config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) if hasattr(config, 'quantization_config'): del config.quantization_config self.config = config self.model = AutoModelForCausalLM.from_pretrained(model_id, config=self.config, trust_remote_code=True) def classify_text(self, text): inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) logits = self.model(**inputs) probabilities = torch.softmax(logits, dim=-1).tolist()[0] predicted_class = torch.argmax(logits, dim=-1).item() return { "Predicted Class": predicted_class, "Probabilities": probabilities } if __name__ == "__main__": model_id = "deepseek-ai/DeepSeek-V3" proxy = RemoteModelProxy(model_id) result = proxy.classify_text("Your input text here") print(result)