import streamlit as st from evaluate import evaluator import evaluate import datasets from huggingface_hub import HfApi, ModelFilter from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import AutoTokenizer, AutoModelForMaskedLM from transformers import pipeline, AutoConfig import matplotlib.pyplot as plt st.title("Metric Compare") st.markdown("### Choose the dataset you want to use for the comparison:") api = HfApi() dsets = [d.id for d in api.list_datasets(filter="task_categories:text-classification", sort = "downloads", direction=-1, limit = 20) if d.id !='glue'] dset = st.selectbox('Choose a dataset from the Hub', options=dsets) info = datasets.get_dataset_infos(dset) dset_config = st.selectbox('What config do you want to use?', options=list(info)) splitlist= [] for s in info[dset_config].splits: if s != 'train': splitlist.append(s) dset_split = st.selectbox('Choose a dataset split for evaluation', options=splitlist) st.markdown("### Select up to 5 models to compare their performance:") filt = ModelFilter(trained_dataset=dset) all_models = [m.modelId for m in api.list_models(filter=filt, sort = "downloads", direction=-1, limit = 20) if 't5' not in m.tags] models = st.multiselect( 'Choose the models that have been trained/finetuned on this dataset', options=all_models) if len(models) > 5: st.exception("Please choose less than 5 models!") st.markdown("### What two metrics do you want to compare?") metrics = st.multiselect( 'Choose the metrics for the comparison', options=['f1', 'accuracy', 'precision', 'recall'], default=["f1", "accuracy"]) st.markdown("### Please wait for the dataset and models to load (this can take some time if they are big!") ### Loading data @st.cache def loaddset(d, d_split): data = datasets.load_dataset(d, split=d_split) return(data) data = loaddset(dset,dset_split) ### Defining Evaluator eval = evaluator("text-classification") ### Loading models @st.cache def load_models(mod_names): model_list=[] for i in range (len(mod_names)): try: globals()[f"tokenizer_{i}"] = AutoTokenizer.from_pretrained(mod_names[i]) globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(mod_names[i]) model_list.append(mod_names[i]) except: continue return(model_list) ### Defining pipelines @st.cache def load_pipes(mod_list): pipe_list=[] for i in range (len(mod_list)): globals()[f"pipe_{i}"] = pipeline("text-classification", model = models[i], tokenizer = models[i], device=-1) return(pipe_list) model_list= load_models(models) pipes = load_pipes(model_list) ### Defining metrics for i in range (len(metrics)): globals()[f"metrics[i]"] = evaluate.load(metrics[i]) ## Label mapping st.markdown("### Help us pick the right labels for your models") st.text("The labels for your dataset are: "+ str(data.features['label'].names)) for i in range (len(model_list)): st.text("The labels for " + str(model_list[i]) + "are: "+ str(AutoConfig.from_pretrained(model_list[i]).id2label)) for j in range (len(data.features['label'].names)): globals()[f"model[i]_label[j]"] = st.selectbox("The label corresponding to **" + str(data.features['label'].names[i]) + "** is:", AutoConfig.from_pretrained(model_list[i]).id2label) _ = """ res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy, label_mapping={"NEGATIVE": 0, "POSITIVE": 1},) res_f11 = eval.compute(model_or_pipeline=pipe1, data=data, metric=f1, label_mapping={"NEGATIVE": 0, "POSITIVE": 1},) print({**res_accuracy1, **res_f11}) pipe2 = pipeline("text-classification", model=model2, tokenizer= tokenizer2, device=0) res_accuracy2 = eval.compute(model_or_pipeline=pipe2, data=data, metric=accuracy, label_mapping={"LABEL_0": 0, "LABEL_1": 1},) res_f12 = eval.compute(model_or_pipeline=pipe2, data=data, metric=f1, label_mapping={"LABEL_0": 0, "LABEL_1": 1},) print({**res_accuracy2, **res_f12}) pipe3 = pipeline("text-classification", model=model3, tokenizer= tokenizer3, device=0) res_accuracy3 = eval.compute(model_or_pipeline=pipe3, data=data, metric=accuracy, label_mapping={"neg": 0, "pos": 1},) res_f13 = eval.compute(model_or_pipeline=pipe3, data=data, metric=f1, label_mapping={"neg": 0, "pos": 1},) print({**res_accuracy3, **res_f13}) pipe4 = pipeline("text-classification", model=model4, tokenizer= tokenizer4, device=0) res_accuracy4 = eval.compute(model_or_pipeline=pipe4, data=data, metric=accuracy, label_mapping={"LABEL_0": 0, "LABEL_1": 1},) res_f14 = eval.compute(model_or_pipeline=pipe4, data=data, metric=f1, label_mapping={"LABEL_0": 0, "LABEL_1": 1},) print({**res_accuracy4, **res_f14}) pipe5 = pipeline("text-classification", model=model5, tokenizer= tokenizer5, device=0) res_accuracy5 = eval.compute(model_or_pipeline=pipe5, data=data, metric=accuracy, label_mapping={"LABEL_0": 0, "LABEL_1": 1},) res_f15 = eval.compute(model_or_pipeline=pipe5, data=data, metric=f1, label_mapping={"LABEL_0": 0, "LABEL_1": 1},) print({**res_accuracy5, **res_f15}) plt.plot(res_accuracy1['accuracy'], res_f11['f1'], marker='o', markersize=6, color="red") plt.annotate('distilbert', xy=(res_accuracy1['accuracy']+0.001, res_f11['f1'])) plt.plot(res_accuracy2['accuracy'], res_f12['f1'], marker='o', markersize=6, color="blue") plt.annotate('distilbert-base-uncased-finetuned', xy=(res_accuracy2['accuracy']+0.001, res_f12['f1'])) plt.plot(res_accuracy3['accuracy'], res_f13['f1'], marker='o', markersize=6, color="green") plt.annotate('roberta-base', xy=(res_accuracy3['accuracy']-0.009, res_f13['f1'])) plt.plot(res_accuracy4['accuracy'], res_f14['f1'], marker='o', markersize=6, color="purple") plt.annotate('funnel-transformer-small', xy=(res_accuracy4['accuracy']-0.015, res_f14['f1'])) plt.plot(res_accuracy5['accuracy'], res_f15['f1'], marker='o', markersize=6, color="black") plt.annotate('SENATOR', xy=(res_accuracy5['accuracy']+0.001, res_f15['f1'])) plt.xlabel('Accuracy') plt.ylabel('F1 Score') #plt.xlim([0.9, 1.0]) #plt.ylim([0.9, 1.0]) plt.title('Comparing the Models') """