Upload 2 files
Browse files- app.py +63 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import gradio as gr
|
4 |
+
from llama_cpp import Llama
|
5 |
+
|
6 |
+
MODEL_PATH = "./models/mistral-7b-instruct-v0.1.Q2_K.gguf"
|
7 |
+
|
8 |
+
# Create models folder and placeholder
|
9 |
+
os.makedirs("models", exist_ok=True)
|
10 |
+
with open("models/.keep", "w") as f:
|
11 |
+
f.write("placeholder")
|
12 |
+
|
13 |
+
# Load quantized Mistral model
|
14 |
+
llm = Llama(
|
15 |
+
model_path=MODEL_PATH,
|
16 |
+
n_ctx=2048,
|
17 |
+
n_threads=8,
|
18 |
+
verbose=False
|
19 |
+
)
|
20 |
+
|
21 |
+
def build_prompt(source, translation):
|
22 |
+
return (
|
23 |
+
f"<|system|>
|
24 |
+
"
|
25 |
+
"You are a helpful assistant that evaluates translation quality. "
|
26 |
+
"Score the quality from 0 (worst) to 1 (best).
|
27 |
+
"
|
28 |
+
"<|user|>
|
29 |
+
"
|
30 |
+
f"Original: {source}\nTranslation: {translation}\n"
|
31 |
+
"How good is the translation?\n<|assistant|>"
|
32 |
+
)
|
33 |
+
|
34 |
+
def estimate_score(source, translation):
|
35 |
+
prompt = build_prompt(source, translation)
|
36 |
+
output = llm(prompt, max_tokens=10, stop=["</s>", "\n"])
|
37 |
+
text = output["choices"][0]["text"].strip()
|
38 |
+
try:
|
39 |
+
score = float([s for s in text.split() if s.replace('.', '', 1).isdigit()][-1])
|
40 |
+
score = round(score, 3)
|
41 |
+
except:
|
42 |
+
score = "N/A"
|
43 |
+
return score
|
44 |
+
|
45 |
+
def process_file(file):
|
46 |
+
df = pd.read_csv(file.name, sep="\t")
|
47 |
+
scores = []
|
48 |
+
for _, row in df.iterrows():
|
49 |
+
score = estimate_score(row["original"], row["translation"])
|
50 |
+
scores.append(score)
|
51 |
+
df["predicted_score"] = scores
|
52 |
+
return df
|
53 |
+
|
54 |
+
demo = gr.Interface(
|
55 |
+
fn=process_file,
|
56 |
+
inputs=gr.File(label="Upload dev.tsv with 'original' and 'translation' columns"),
|
57 |
+
outputs=gr.Dataframe(),
|
58 |
+
title="Mistral 7B Q2_K MT QE",
|
59 |
+
description="Translation Quality Estimation using Mistral-7B-Instruct Q2_K GGUF via llama-cpp-python on CPU"
|
60 |
+
)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
llama-cpp-python==0.2.56
|
2 |
+
pandas
|
3 |
+
gradio
|