File size: 5,648 Bytes
8cf98bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from diffusers import LTXPipeline, LTXVideoTransformer3DModel
from huggingface_hub import hf_hub_download
import argparse
import os
from q8_ltx import check_transformer_replaced_correctly, replace_gelu, replace_linear, replace_rms_norm
import safetensors.torch
from q8_kernels.graph.graph import make_dynamic_graphed_callable
import torch
import gc
from diffusers.utils import export_to_video


# Taken from
# https://github.com/KONAKONA666/LTX-Video/blob/c8462ed2e359cda4dec7f49d98029994e850dc90/inference.py#L115C1-L138C28
def convert_prompt_to_filename(text: str, max_len: int = 20) -> str:
    # Remove non-letters and convert to lowercase
    clean_text = "".join(char.lower() for char in text if char.isalpha() or char.isspace())
    # Split into words
    words = clean_text.split()

    # Build result string keeping track of length
    result = []
    current_length = 0

    for word in words:
        # Add word length plus 1 for underscore (except for first word)
        new_length = current_length + len(word)
        if new_length <= max_len:
            result.append(word)
            current_length += len(word)
        else:
            break

    return "-".join(result)


def load_text_encoding_pipeline():
    return LTXPipeline.from_pretrained(
        "Lightricks/LTX-Video", transformer=None, vae=None, torch_dtype=torch.bfloat16
    ).to("cuda")


def encode_prompt(pipe, prompt, negative_prompt, max_sequence_length=128):
    prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = pipe.encode_prompt(
        prompt=prompt, negative_prompt=negative_prompt, max_sequence_length=max_sequence_length
    )
    return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask


def load_q8_transformer(args):
    with torch.device("meta"):
        transformer_config = LTXVideoTransformer3DModel.load_config("Lightricks/LTX-Video", subfolder="transformer")
        transformer = LTXVideoTransformer3DModel.from_config(transformer_config)

    transformer = replace_gelu(transformer)[0]
    transformer = replace_linear(transformer)[0]
    transformer = replace_rms_norm(transformer)[0]

    if os.path.isfile(f"{args.q8_transformer_path}/diffusion_pytorch_model.safetensors"):
        state_dict = safetensors.torch.load_file(f"{args.q8_transformer_path}/diffusion_pytorch_model.safetensors")
    else:
        state_dict = safetensors.torch.load_file(
            hf_hub_download(args.q8_transformer_path, "diffusion_pytorch_model.safetensors")
        )
    transformer.load_state_dict(state_dict, strict=True, assign=True)
    check_transformer_replaced_correctly(transformer)
    return transformer


@torch.no_grad()
def main(args):
    text_encoding_pipeline = load_text_encoding_pipeline()
    prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = encode_prompt(
        pipe=text_encoding_pipeline,
        prompt=args.prompt,
        negative_prompt=args.negative_prompt,
        max_sequence_length=args.max_sequence_length,
    )
    del text_encoding_pipeline
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    gc.collect()

    if args.q8_transformer_path:
        transformer = load_q8_transformer(args)
        pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", transformer=None, text_encoder=None)
        pipe.transformer = transformer

        pipe.transformer = pipe.transformer.to(torch.bfloat16)
        for b in pipe.transformer.transformer_blocks:
            b.to(dtype=torch.float)

        for n, m in pipe.transformer.transformer_blocks.named_parameters():
            if "scale_shift_table" in n:
                m.data = m.data.to(torch.bfloat16)

        pipe.transformer.forward = make_dynamic_graphed_callable(pipe.transformer.forward)
        pipe.vae = pipe.vae.to(torch.bfloat16)

    else:
        pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", text_encoder=None, torch_dtype=torch.bfloat16)

    pipe = pipe.to("cuda")

    width, height = args.resolution.split("x")[::-1]
    video = pipe(
        prompt_embeds=prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_embeds=negative_prompt_embeds,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        width=int(width),
        height=int(height),
        num_frames=args.num_frames,
        num_inference_steps=args.steps,
        max_sequence_length=args.max_sequence_length,
        generator=torch.manual_seed(2025),
    ).frames[0]
    print(f"Max memory: {torch.cuda.max_memory_allocated() / 1024 / 1024} MB.")

    if args.out_path is None:
        filename_from_prompt = convert_prompt_to_filename(args.prompt, max_len=30)
        base_filename = f"{filename_from_prompt}_{args.num_frames}x{height}x{width}"
        base_filename += "_q8" if args.q8_transformer_path is not None else ""
        args.out_path = base_filename + ".mp4"
    export_to_video(video, args.out_path, fps=24)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--q8_transformer_path", type=str, default=None)
    parser.add_argument("--prompt", type=str)
    parser.add_argument("--negative_prompt", type=str, default=None)
    parser.add_argument("--num_frames", type=int, default=81)
    parser.add_argument("--resolution", type=str, default="480x704")
    parser.add_argument("--steps", type=int, default=50)
    parser.add_argument("--max_sequence_length", type=int, default=512)
    parser.add_argument("--out_path", type=str, default=None)
    args = parser.parse_args()
    main(args)