Spaces:
Running
Running
Eachan Johnson
commited on
Commit
·
597542d
1
Parent(s):
ad359b2
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- .gradio/certificate.pem +31 -0
- README.md +2 -0
- app.py +438 -0
- cache/cache_csv_default-00953711766d478a_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-03c2d6a24096cadb_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-06ebd4abec88f824_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-08596bdace45a9e0_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-0ccf5404d587e265_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-1152648bff9b0619_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-11d1d03ac37ee54d_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-13e8ff2cbdbb1601_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-1b04ae4fda4a32e3_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-1d3aaac1973def40_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-1d8109d793352a35_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-1ecc7a7549fcfdea_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-1eeddf0790526c7b_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-215074de73e76f09_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-242181ae292241ee_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-263b017a70fce543_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-2a8ca29769ad0476_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-2c97b90189817bf7_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-3030c166054fac30_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-365a0c686393a911_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-3671ae337359ab4f_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-371d32405b5d7577_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-3b5f5887e0c60283_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-422903a15970f1e3_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-449dcf17eba1dc10_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-4caa284a4ac72c2a_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-4d6078d90c039063_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-4e957d94d04326a9_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-4f6c27099bb53527_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-502853d933683bdb_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-53eec1958d34ed11_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-5a935366194dc6e5_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-5f1d1406a3bfcf0b_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-6439ec426976ccb8_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-6555fb0c7e6de5c2_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-67de10cf26a832b6_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-6cbfc46a17993cd2_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-73e50ee513b905fa_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-747fafe34f78e023_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-7615c4b4c8d4b6ea_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-7636b4ed3c6760bc_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-768e7e63b5514f07_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-77a76b0b50997a1b_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-7a2ef400f8e478b4_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-7b57b57218a16632_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
- cache/cache_csv_default-7f002e03028b33d5_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/*.csv
|
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
README.md
CHANGED
@@ -16,4 +16,6 @@ preload_from_hub:
|
|
16 |
- scbirlab/thomas-2018-spark-wt
|
17 |
---
|
18 |
|
|
|
|
|
19 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
16 |
- scbirlab/thomas-2018-spark-wt
|
17 |
---
|
18 |
|
19 |
+
[](https://huggingface.co/spaces/scbirlab/mic-predict)
|
20 |
+
|
21 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Gradio demo for schemist."""
|
2 |
+
|
3 |
+
from typing import Iterable, List, Optional, Union
|
4 |
+
from io import TextIOWrapper
|
5 |
+
import os
|
6 |
+
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
|
7 |
+
|
8 |
+
from carabiner import cast, print_err
|
9 |
+
from carabiner.pd import read_table
|
10 |
+
from duvida.autoclass import AutoModelBox
|
11 |
+
import gradio as gr
|
12 |
+
import nemony as nm
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
from rdkit.Chem import Draw, Mol
|
16 |
+
from schemist.converting import (
|
17 |
+
_TO_FUNCTIONS,
|
18 |
+
_FROM_FUNCTIONS,
|
19 |
+
convert_string_representation,
|
20 |
+
_x2mol,
|
21 |
+
)
|
22 |
+
from schemist.tables import converter
|
23 |
+
import torch
|
24 |
+
|
25 |
+
HEADER_FILE = os.path.join("sources", "header.md")
|
26 |
+
MODEL_REPOS = {
|
27 |
+
"Klebsiella pneumoniae": "hf://scbirlab/spark-dv-fp-2503-kpn",
|
28 |
+
}
|
29 |
+
|
30 |
+
MODELBOXES = {
|
31 |
+
key: AutoModelBox.from_pretrained(val, cache_dir="./cache")
|
32 |
+
for key, val in MODEL_REPOS.items()
|
33 |
+
}
|
34 |
+
|
35 |
+
EXTRA_METRICS = {
|
36 |
+
"log10(variance)": lambda modelbox, candidates: modelbox.prediction_variance(candidates=candidates).map(lambda x: {modelbox._variance_key: torch.log10(x[modelbox._variance_key])}),
|
37 |
+
"Tanimoto nearest neighbor to training data": lambda modelbox, candidates: modelbox.tanimoto_nn(candidates=candidates),
|
38 |
+
"Doubtscore": lambda modelbox, candidates: modelbox.doubtscore(candidates=candidates).map(lambda x: {"doubtscore": torch.log10(x["doubtscore"])}),
|
39 |
+
"Information sensitivity (approx.)": lambda modelbox, candidates: modelbox.information_sensitivity(candidates=candidates, optimality_approximation=True, approximator="squared_jacobian").map(lambda x: {"information sensitivity": torch.log10(x["information sensitivity"])}),
|
40 |
+
}
|
41 |
+
|
42 |
+
def load_input_data(file: TextIOWrapper) -> pd.DataFrame:
|
43 |
+
df = read_table(file.name)
|
44 |
+
string_cols = list(df.select_dtypes(exclude=[np.number]))
|
45 |
+
df = gr.Dataframe(value=df, visible=True)
|
46 |
+
return df, gr.Dropdown(choices=string_cols, interactive=True)
|
47 |
+
|
48 |
+
|
49 |
+
def _clean_split_input(strings: str) -> List[str]:
|
50 |
+
return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")]
|
51 |
+
|
52 |
+
|
53 |
+
def _convert_input(
|
54 |
+
strings: str,
|
55 |
+
input_representation: str = 'smiles',
|
56 |
+
output_representation: Union[Iterable[str], str] = 'smiles'
|
57 |
+
) -> List[str]:
|
58 |
+
strings = _clean_split_input(strings)
|
59 |
+
converted = convert_string_representation(
|
60 |
+
strings=strings,
|
61 |
+
input_representation=input_representation,
|
62 |
+
output_representation=output_representation,
|
63 |
+
)
|
64 |
+
return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()}
|
65 |
+
|
66 |
+
|
67 |
+
def convert_one(
|
68 |
+
strings: str,
|
69 |
+
input_representation: str = 'smiles',
|
70 |
+
output_representation: Union[Iterable[str], str] = 'smiles'
|
71 |
+
):
|
72 |
+
|
73 |
+
df = pd.DataFrame({
|
74 |
+
input_representation: _clean_split_input(strings),
|
75 |
+
})
|
76 |
+
|
77 |
+
return convert_file(
|
78 |
+
df=df,
|
79 |
+
column=input_representation,
|
80 |
+
input_representation=input_representation,
|
81 |
+
output_representation=output_representation,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
def predict_one(
|
86 |
+
strings: str,
|
87 |
+
input_representation: str = 'smiles',
|
88 |
+
predict: Union[Iterable[str], str] = 'smiles',
|
89 |
+
extra_metrics: Optional[Union[Iterable[str], str]] = None
|
90 |
+
):
|
91 |
+
if extra_metrics is None:
|
92 |
+
extra_metrics = []
|
93 |
+
else:
|
94 |
+
extra_metrics = cast(extra_metrics, to=list)
|
95 |
+
prediction_df = convert_one(
|
96 |
+
strings=strings,
|
97 |
+
input_representation=input_representation,
|
98 |
+
output_representation=['id', 'smiles', 'inchikey', "mwt", "clogp"],
|
99 |
+
)
|
100 |
+
species_to_predict = cast(predict, to=list)
|
101 |
+
prediction_cols = []
|
102 |
+
for species in species_to_predict:
|
103 |
+
message = f"Predicting for species: {species}"
|
104 |
+
print_err(message)
|
105 |
+
gr.Info(message, duration=3)
|
106 |
+
this_modelbox = MODELBOXES[species]
|
107 |
+
this_features = this_modelbox._input_cols
|
108 |
+
this_labels = this_modelbox._label_cols
|
109 |
+
this_prediction_input = (
|
110 |
+
prediction_df
|
111 |
+
.rename(columns={
|
112 |
+
"smiles": this_features[0],
|
113 |
+
})
|
114 |
+
.assign(**{label: np.nan for label in this_labels})
|
115 |
+
)
|
116 |
+
print(this_prediction_input)
|
117 |
+
prediction = this_modelbox.predict(
|
118 |
+
data=this_prediction_input,
|
119 |
+
features=this_features,
|
120 |
+
labels=this_labels,
|
121 |
+
aggregator="mean",
|
122 |
+
cache="./cache"
|
123 |
+
).with_format("numpy")["__prediction__"].flatten()
|
124 |
+
print(prediction)
|
125 |
+
this_col = f"{species}: predicted MIC (µM)"
|
126 |
+
prediction_df[this_col] = np.power(10., -prediction) * 1e6
|
127 |
+
prediction_cols.append(this_col)
|
128 |
+
|
129 |
+
for extra_metric in extra_metrics:
|
130 |
+
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
|
131 |
+
this_col = f"{species}: {extra_metric}"
|
132 |
+
prediction_cols.append(this_col)
|
133 |
+
print(">>>", this_modelbox._input_training_data)
|
134 |
+
print(">>>", this_modelbox._input_training_data.format)
|
135 |
+
print(">>>", this_modelbox._in_key, this_modelbox._out_key)
|
136 |
+
this_extra = (
|
137 |
+
EXTRA_METRICS[extra_metric](
|
138 |
+
this_modelbox,
|
139 |
+
this_prediction_input,
|
140 |
+
)
|
141 |
+
.with_format("numpy")
|
142 |
+
)
|
143 |
+
prediction_df[this_col] = this_extra[this_extra.column_names[-1]]
|
144 |
+
|
145 |
+
return gr.DataFrame(
|
146 |
+
prediction_df[['id'] + prediction_cols + ['smiles', 'inchikey', "mwt", "clogp"]],
|
147 |
+
visible=True
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
def convert_file(
|
152 |
+
df: pd.DataFrame,
|
153 |
+
column: str = 'smiles',
|
154 |
+
input_representation: str = 'smiles',
|
155 |
+
output_representation: Union[str, Iterable[str]] = 'smiles'
|
156 |
+
):
|
157 |
+
message = f"Converting from {input_representation} to {output_representation}..."
|
158 |
+
print_err(message)
|
159 |
+
gr.Info(message, duration=3)
|
160 |
+
errors, df = converter(
|
161 |
+
df=df,
|
162 |
+
column=column,
|
163 |
+
input_representation=input_representation,
|
164 |
+
output_representation=output_representation,
|
165 |
+
)
|
166 |
+
df = df[
|
167 |
+
cast(output_representation, to=list) +
|
168 |
+
[col for col in df if col not in output_representation]
|
169 |
+
]
|
170 |
+
all_err = sum(err for key, err in errors.items())
|
171 |
+
message = (
|
172 |
+
f"Converted {df.shape[0]} molecules from "
|
173 |
+
f"{input_representation} to {output_representation} "
|
174 |
+
f"with {all_err} errors!"
|
175 |
+
)
|
176 |
+
print_err(message)
|
177 |
+
gr.Info(message, duration=5)
|
178 |
+
return df
|
179 |
+
|
180 |
+
|
181 |
+
def predict_file(
|
182 |
+
df: pd.DataFrame,
|
183 |
+
column: str = 'smiles',
|
184 |
+
input_representation: str = 'smiles',
|
185 |
+
extra_metrics: Optional[Union[Iterable[str], str]] = None
|
186 |
+
):
|
187 |
+
if extra_metrics is None:
|
188 |
+
extra_metrics = []
|
189 |
+
else:
|
190 |
+
extra_metrics = cast(extra_metrics, to=list)
|
191 |
+
prediction_df = convert_file(
|
192 |
+
df,
|
193 |
+
column=column,
|
194 |
+
input_representation=input_representation,
|
195 |
+
output_representation=["id", "smiles", "inchikey", "mwt", "clogp"],
|
196 |
+
)
|
197 |
+
species_to_predict = cast(predict, to=list)
|
198 |
+
prediction_cols = []
|
199 |
+
for species in species_to_predict:
|
200 |
+
this_modelbox = MODELBOXES[species]
|
201 |
+
this_features = this_modelbox._input_cols
|
202 |
+
this_labels = this_modelbox._label_cols
|
203 |
+
this_prediction_input = (
|
204 |
+
prediction_df
|
205 |
+
.rename(columns={
|
206 |
+
"smiles": this_features[0],
|
207 |
+
})
|
208 |
+
.assign(**{label: np.nan for label in this_labels})
|
209 |
+
)
|
210 |
+
prediction = this_modelbox.predict(
|
211 |
+
data=this_prediction_input,
|
212 |
+
features=this_features,
|
213 |
+
labels=this_labels,
|
214 |
+
cache="./cache"
|
215 |
+
).with_format("numpy")["__prediction__"].flatten()
|
216 |
+
print(prediction)
|
217 |
+
this_col = f"{species}: predicted MIC (µM)"
|
218 |
+
prediction_df[this_col] = np.power(10., -prediction) * 1e6
|
219 |
+
prediction_cols.append(this_col)
|
220 |
+
|
221 |
+
for extra_metric in extra_metrics:
|
222 |
+
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
|
223 |
+
this_col = f"{species}: {extra_metric}"
|
224 |
+
prediction_cols.append(this_col)
|
225 |
+
print(">>>", this_modelbox._input_training_data)
|
226 |
+
this_extra = (
|
227 |
+
EXTRA_METRICS[extra_metric](
|
228 |
+
this_modelbox,
|
229 |
+
this_prediction_input,
|
230 |
+
)
|
231 |
+
.with_format("numpy")
|
232 |
+
)
|
233 |
+
prediction_df[this_col] = this_extra[this_extra.column_names[0]]
|
234 |
+
|
235 |
+
return prediction_df[['id'] + prediction_cols + ['smiles', 'inchikey', "mwt", "clogp"]]
|
236 |
+
|
237 |
+
def draw_one(
|
238 |
+
strings: Union[Iterable[str], str],
|
239 |
+
input_representation: str = 'smiles'
|
240 |
+
):
|
241 |
+
_ids = _convert_input(
|
242 |
+
strings,
|
243 |
+
input_representation,
|
244 |
+
["inchikey", "id", "pubchem_name"],
|
245 |
+
)
|
246 |
+
mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list)
|
247 |
+
if isinstance(mols, Mol):
|
248 |
+
mols = [mols]
|
249 |
+
return Draw.MolsToGridImage(
|
250 |
+
mols,
|
251 |
+
molsPerRow=min(3, len(mols)),
|
252 |
+
subImgSize=(450, 450),
|
253 |
+
legends=["\n".join(items) for items in zip(*_ids.values())],
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
def download_table(
|
258 |
+
df: pd.DataFrame
|
259 |
+
) -> str:
|
260 |
+
df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
|
261 |
+
filename = f"converted-{df_hash}.csv"
|
262 |
+
df.to_csv(filename, index=False)
|
263 |
+
return gr.DownloadButton(value=filename, visible=True)
|
264 |
+
|
265 |
+
with gr.Blocks() as demo:
|
266 |
+
|
267 |
+
with open(HEADER_FILE, 'r') as f:
|
268 |
+
header_md = f.read()
|
269 |
+
gr.Markdown(header_md)
|
270 |
+
|
271 |
+
with gr.Tab(label="Paste one per line"):
|
272 |
+
input_format_single = gr.Dropdown(
|
273 |
+
label="Input string format",
|
274 |
+
choices=list(_FROM_FUNCTIONS),
|
275 |
+
value="smiles",
|
276 |
+
interactive=True,
|
277 |
+
)
|
278 |
+
input_line = gr.Textbox(
|
279 |
+
label="Input",
|
280 |
+
placeholder="Paste your molecule here, one per line",
|
281 |
+
lines=2,
|
282 |
+
interactive=True,
|
283 |
+
submit_btn=True,
|
284 |
+
)
|
285 |
+
output_species_single = gr.CheckboxGroup(
|
286 |
+
label="Species for prediction",
|
287 |
+
choices=list(MODEL_REPOS),
|
288 |
+
value=list(MODEL_REPOS)[:1],
|
289 |
+
interactive=True,
|
290 |
+
)
|
291 |
+
extra_metric = gr.CheckboxGroup(
|
292 |
+
label="Extra metrics (can increase calculation time!)",
|
293 |
+
choices=list(EXTRA_METRICS),
|
294 |
+
value=list(EXTRA_METRICS)[:2],
|
295 |
+
interactive=True,
|
296 |
+
)
|
297 |
+
examples = gr.Examples(
|
298 |
+
examples=[
|
299 |
+
[
|
300 |
+
'\n'.join([
|
301 |
+
"C1CC1N2C=C(C(=O)C3=CC(=C(C=C32)N4CCNCC4)F)C(=O)O",
|
302 |
+
"CN1C(=NC(=O)C(=O)N1)SCC2=C(N3[C@@H]([C@@H](C3=O)NC(=O)/C(=N\OC)/C4=CSC(=N4)N)SC2)C(=O)O",
|
303 |
+
"CC(=O)NC[C@H]1CN(C(=O)O1)C2=CC(=C(C=C2)N3CCOCC3)F",
|
304 |
+
"C1CC2=CC(=NC=C2OC1)CNC3CCN(CC3)C[C@@H]4CN5C(=O)C=CC6=C5N4C(=O)C=N6",
|
305 |
+
]),
|
306 |
+
list(MODEL_REPOS)[0],
|
307 |
+
list(EXTRA_METRICS)[:2],
|
308 |
+
], # cipro, ceftriaxone, linezolid, gepotidacin
|
309 |
+
[
|
310 |
+
'\n'.join([
|
311 |
+
"C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O",
|
312 |
+
"CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=CC=C3)N)C(=O)O)C",
|
313 |
+
"CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=C(C=C3)O)N)C(=O)O)C",
|
314 |
+
]),
|
315 |
+
list(MODEL_REPOS)[0],
|
316 |
+
list(EXTRA_METRICS)[:2],
|
317 |
+
], # doxorubicin, ampicillin, amoxicillin
|
318 |
+
[
|
319 |
+
'\n'.join([
|
320 |
+
"C1=C(SC(=N1)SC2=NN=C(S2)N)[N+](=O)[O-]",
|
321 |
+
"C1CN(CCC12C3=CC=CC=C3NC(=O)O2)CCC4=CC=C(C=C4)C(F)(F)F",
|
322 |
+
"COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N",
|
323 |
+
"CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N",
|
324 |
+
"C1[C@@H]([C@H]([C@@H]([C@H]([C@@H]1NC(=O)[C@H](CCN)O)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)N)O)O)O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CN)O)O)O)N\nC1=CN=CC=C1C(=O)NN",
|
325 |
+
]),
|
326 |
+
list(MODEL_REPOS)[0],
|
327 |
+
list(EXTRA_METRICS)[:2],
|
328 |
+
], # Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid
|
329 |
+
],
|
330 |
+
example_labels=[
|
331 |
+
"Ciprofloxacin, Ceftriaxone, Linezolid, Gepotidacin",
|
332 |
+
"Doxorubicin, Ampicillin, Amoxicillin",
|
333 |
+
"Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid"
|
334 |
+
],
|
335 |
+
inputs=[input_line, output_species_single, extra_metric],
|
336 |
+
cache_mode="eager",
|
337 |
+
)
|
338 |
+
download_single = gr.DownloadButton(
|
339 |
+
label="Download predictions",
|
340 |
+
visible=False,
|
341 |
+
)
|
342 |
+
with gr.Row():
|
343 |
+
output_line = gr.DataFrame(
|
344 |
+
label="Predictions",
|
345 |
+
interactive=False,
|
346 |
+
visible=False,
|
347 |
+
)
|
348 |
+
drawing = gr.Image(label="Chemical structures")
|
349 |
+
gr.on(
|
350 |
+
[
|
351 |
+
input_line.submit,
|
352 |
+
],
|
353 |
+
fn=predict_one,
|
354 |
+
inputs=[
|
355 |
+
input_line,
|
356 |
+
input_format_single,
|
357 |
+
output_species_single,
|
358 |
+
extra_metric,
|
359 |
+
],
|
360 |
+
outputs={
|
361 |
+
output_line,
|
362 |
+
}
|
363 |
+
).then(
|
364 |
+
draw_one,
|
365 |
+
inputs=[
|
366 |
+
input_line,
|
367 |
+
input_format_single,
|
368 |
+
],
|
369 |
+
outputs=drawing,
|
370 |
+
).then(
|
371 |
+
download_table,
|
372 |
+
inputs=output_line,
|
373 |
+
outputs=download_single
|
374 |
+
)
|
375 |
+
|
376 |
+
with gr.Tab("Convert a file"):
|
377 |
+
input_file = gr.File(
|
378 |
+
label="Upload a table of chemical compounds here",
|
379 |
+
file_types=[".xlsx", ".csv", ".tsv", ".txt"],
|
380 |
+
)
|
381 |
+
with gr.Row():
|
382 |
+
input_column = gr.Dropdown(
|
383 |
+
label="Input column name",
|
384 |
+
choices=[],
|
385 |
+
)
|
386 |
+
input_format = gr.Dropdown(
|
387 |
+
label="Input string format",
|
388 |
+
choices=list(_FROM_FUNCTIONS),
|
389 |
+
value="smiles",
|
390 |
+
interactive=True,
|
391 |
+
)
|
392 |
+
output_species = gr.CheckboxGroup(
|
393 |
+
label="Species for prediction",
|
394 |
+
choices=list(MODEL_REPOS),
|
395 |
+
value=list(MODEL_REPOS)[:1],
|
396 |
+
interactive=True,
|
397 |
+
)
|
398 |
+
go_button2 = gr.Button(
|
399 |
+
value="Predict!",
|
400 |
+
)
|
401 |
+
|
402 |
+
download = gr.DownloadButton(
|
403 |
+
label="Download converted data",
|
404 |
+
visible=False,
|
405 |
+
)
|
406 |
+
input_data = gr.Dataframe(
|
407 |
+
label="Input data",
|
408 |
+
max_height=100,
|
409 |
+
visible=False,
|
410 |
+
interactive=False,
|
411 |
+
)
|
412 |
+
|
413 |
+
input_file.upload(
|
414 |
+
load_input_data,
|
415 |
+
inputs=[input_file],
|
416 |
+
outputs=[input_data, input_column]
|
417 |
+
)
|
418 |
+
go_button2.click(
|
419 |
+
convert_file,
|
420 |
+
inputs=[
|
421 |
+
input_data,
|
422 |
+
input_column,
|
423 |
+
input_format,
|
424 |
+
output_species,
|
425 |
+
],
|
426 |
+
outputs={
|
427 |
+
input_data,
|
428 |
+
}
|
429 |
+
).then(
|
430 |
+
download_table,
|
431 |
+
inputs=input_data,
|
432 |
+
outputs=download
|
433 |
+
)
|
434 |
+
|
435 |
+
if __name__ == "__main__":
|
436 |
+
demo.queue()
|
437 |
+
demo.launch(share=True)
|
438 |
+
|
cache/cache_csv_default-00953711766d478a_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-03c2d6a24096cadb_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-06ebd4abec88f824_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-08596bdace45a9e0_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-0ccf5404d587e265_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-1152648bff9b0619_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-11d1d03ac37ee54d_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-13e8ff2cbdbb1601_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-1b04ae4fda4a32e3_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-1d3aaac1973def40_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-1d8109d793352a35_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-1ecc7a7549fcfdea_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-1eeddf0790526c7b_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-215074de73e76f09_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-242181ae292241ee_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-263b017a70fce543_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-2a8ca29769ad0476_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-2c97b90189817bf7_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-3030c166054fac30_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-365a0c686393a911_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-3671ae337359ab4f_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-371d32405b5d7577_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-3b5f5887e0c60283_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-422903a15970f1e3_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-449dcf17eba1dc10_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-4caa284a4ac72c2a_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-4d6078d90c039063_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-4e957d94d04326a9_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-4f6c27099bb53527_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-502853d933683bdb_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-53eec1958d34ed11_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-5a935366194dc6e5_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-5f1d1406a3bfcf0b_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-6439ec426976ccb8_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-6555fb0c7e6de5c2_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-67de10cf26a832b6_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-6cbfc46a17993cd2_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-73e50ee513b905fa_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-747fafe34f78e023_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-7615c4b4c8d4b6ea_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-7636b4ed3c6760bc_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-768e7e63b5514f07_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-77a76b0b50997a1b_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-7a2ef400f8e478b4_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-7b57b57218a16632_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|
cache/cache_csv_default-7f002e03028b33d5_0.0.0_a43390c7ecea6519ff2ce9d10005c8750601c9e456069be5efbd2747df45f420.lock
ADDED
File without changes
|