HakimAiV2 / datasets /dataset_mappers /biomed_dataset_mapper.py
scdrand23's picture
not working version
814a594
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/d2/detr/dataset_mapper.py
import copy
import logging
import random
import numpy as np
import torch
from transformers import AutoTokenizer, LlamaForCausalLM
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.transforms import TransformGen
from detectron2.structures import BitMasks, Boxes, Instances, BoxMode
from detectron2.structures.boxes import pairwise_iou
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from detectron2.data import MetadataCatalog
from pycocotools import mask as coco_mask
from utilities import prompt_engineering
from modeling.language import build_tokenizer
from modeling.language.misc import text_noun_with_prompt_all
from modeling.utils import configurable
from ..visual_sampler.sampler import build_shape_sampler
__all__ = ["BioMedDatasetMapper"]
def build_transform_gen(cfg, is_train):
"""
Create a list of default :class:`Augmentation` from config.
Now it includes resizing and flipping.
Returns:
list[Augmentation]
"""
assert is_train, "Only support training augmentation"
cfg_input = cfg['INPUT']
image_size = cfg_input['IMAGE_SIZE']
min_scale = cfg_input['MIN_SCALE']
max_scale = cfg_input['MAX_SCALE']
augmentation = []
if cfg_input['RANDOM_FLIP'] != "none":
augmentation.append(
T.RandomFlip(
horizontal=cfg_input['RANDOM_FLIP'] == "horizontal",
vertical=cfg_input['RANDOM_FLIP'] == "vertical",
)
)
augmentation.extend([
T.ResizeScale(
min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size
),
T.FixedSizeCrop(crop_size=(image_size, image_size)),
])
return augmentation
def build_transform_gen_se(cfg, is_train):
# min_scale = cfg['INPUT']['MIN_SIZE_TEST']
# max_scale = cfg['INPUT']['MAX_SIZE_TEST']
augmentation = []
# augmentation.extend([
# T.ResizeShortestEdge(
# min_scale, max_size=max_scale
# ),
# ])
return augmentation
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
# This is specifically designed for the COCO dataset.
class BioMedDatasetMapper:
"""
A callable which takes a dataset dict in Detectron2 Dataset format,
and map it into a format used by MaskFormer.
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.
The callable currently does the following:
1. Read the image from "file_name"
2. Applies geometric transforms to the image and annotation
3. Find and applies suitable cropping to the image and annotation
4. Prepare image and annotation to Tensors
"""
@configurable
def __init__(
self,
is_train=True,
*,
tfm_gens,
image_format,
caption_thres,
grounding,
lvis,
lvis_thres,
max_grounding_num,
shape_sampler,
retrieval,
max_token_num,
tokenizer,
binary_classes: bool,
rotate: bool,
):
"""
NOTE: this interface is experimental.
Args:
is_train: for training or inference
augmentations: a list of augmentations or deterministic transforms to apply
crop_gen: crop augmentation
tfm_gens: data augmentation
image_format: an image format supported by :func:`detection_utils.read_image`.
"""
self.tfm_gens = tfm_gens
logging.getLogger(__name__).info(
"[COCOPanopticNewBaselineDatasetMapper] Full TransformGens used in training: {}".format(
str(self.tfm_gens)
)
)
self.img_format = image_format
self.is_train = is_train
self.caption_thres = caption_thres
self.grounding = grounding
self.lvis = lvis
self.lvis_thres = lvis_thres
self.max_grounding_num = max_grounding_num
self.shape_sampler = shape_sampler
self.retrieval = retrieval
self.tokenizer = tokenizer
self.max_token_num = max_token_num
self.binary_classes = binary_classes
self.rotate = rotate
@classmethod
def from_config(cls, cfg, is_train=True):
# Build augmentation
if is_train:
tfm_gens = build_transform_gen(cfg, is_train)
else:
tfm_gens = build_transform_gen_se(cfg, is_train)
shape_sampler = build_shape_sampler(cfg)
retrieval = cfg['MODEL']['DECODER']['RETRIEVAL']['ENABLED']
tokenizer, max_token_num = None, None
if retrieval:
lang_model = cfg['MODEL']['TEXT']['NAME']
max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
if 'llama' in lang_model:
tokenizer = AutoTokenizer.from_pretrained(lang_model, padding_side='right')
tokenizer.pad_token = tokenizer.eos_token
else:
tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
ret = {
"is_train": is_train,
"tfm_gens": tfm_gens,
"image_format": cfg['INPUT']['FORMAT'],
"caption_thres": cfg['MODEL']['DECODER']['CAPTION']['SIM_THRES'],
"grounding": cfg['MODEL']['DECODER']['GROUNDING']['ENABLED'],
"lvis": cfg['MODEL']['DECODER']['LVIS']['ENABLED'],
"lvis_thres": cfg['MODEL']['DECODER']['LVIS']['THRES'],
"max_grounding_num": cfg['MODEL']['DECODER']['GROUNDING']['MAX_LEN'],
"shape_sampler": shape_sampler,
"retrieval": retrieval,
"max_token_num": max_token_num,
"tokenizer": tokenizer,
"binary_classes": cfg['MODEL']['ENCODER']['BINARY_CLASSES'],
"rotate": cfg['INPUT']['RANDOM_ROTATE'],
}
return ret
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
while True:
try:
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
break
except:
print('Image loading error:', dataset_dict["file_name"])
utils.check_image_size(dataset_dict, image)
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
image_shape = image.shape[:2] # h, w
rotate_time = 0
if self.is_train and self.rotate and random.random() < 0.5:
rotate_time = random.randint(1, 3)
if rotate_time > 0:
image = np.rot90(image, rotate_time)
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
# Therefore it's important to use torch.Tensor.
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
grounding_anno = dataset_dict['grounding_info']
if len(grounding_anno) == 0:
print(dataset_dict['file_name'])
assert len(grounding_anno) > 0
masks_grd = []
texts_grd = []
boxes_grd = []
hash_grd = []
classes = []
masks_orig = []
for ann in grounding_anno:
if 'segmentation' in ann:
if len(ann['segmentation']) == 0:
print('Empty segmentation!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
continue
rle = coco_mask.frPyObjects(
ann['segmentation'], dataset_dict['height'], dataset_dict['width'])
m = coco_mask.decode(rle)
masks_orig.append(m)
# sometimes there are multiple binary map (corresponding to multiple segs)
m = np.sum(m, axis=2)
else:
# directly read from mask file
while True:
try:
m = utils.read_image(ann["mask_file"], format=self.img_format)
break
except:
print('Image loading error:', ann["mask_file"])
m = np.sum(m, axis=2)
m = 1 * (m > 0)
m = m.astype(np.uint8) # convert to np.uint8
m = transforms.apply_segmentation(255*m[:,:,None])[:,:,0]
if rotate_time > 0:
m = np.rot90(m, rotate_time)
masks_grd += [m]
rand_id = random.randint(0, len(ann['sentences'])-1)
texts_grd.append(ann['sentences'][rand_id]['raw'].lower())
hash_grd.append(hash(ann['sentences'][rand_id]['raw'].lower()))
if self.binary_classes:
ann["category_id"] = 1 * (ann["category_id"] > 0)
classes.append(ann["category_id"])
#masks_grd = torch.from_numpy(np.stack(masks_grd))
boxes_grd = torch.tensor(boxes_grd)
groundings = {'masks': masks_grd, 'texts': texts_grd, 'hash': hash_grd, 'mode': 'text'}
dataset_dict["groundings"] = groundings
masks_grd = torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks_grd])
instances = Instances(image_shape)
instances.gt_masks = BitMasks(masks_grd)
instances.gt_boxes = BitMasks(masks_grd).get_bounding_boxes()
classes = np.array(classes)
is_things = np.array([1 for _ in classes])
instances.gt_classes = torch.tensor(classes, dtype=torch.int64)
instances.is_things = torch.tensor(is_things, dtype=torch.int64)
dataset_dict["instances"] = instances
spatial_query_utils = self.shape_sampler(instances)
dataset_dict['spatial_query'] = spatial_query_utils
if self.retrieval:
captions = dataset_dict['captions']
tokens = self.tokenizer(
captions, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
)
dataset_dict['tokens'] = {"input_ids": tokens["input_ids"], "attention_mask": tokens["attention_mask"]}
if self.grounding:
grounding_anno = dataset_dict['grounding_info']
grounding_len = random.randint(1, self.max_grounding_num-1)
if len(grounding_anno) > 0:
masks_grd = []
texts_grd = []
mode = 'text'
random.shuffle(grounding_anno)
for ann in grounding_anno:
if 'segmentation' in ann:
if len(ann['segmentation']) == 0:
print('Empty segmentation!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
continue
rle = coco_mask.frPyObjects(
ann['segmentation'], dataset_dict['height'], dataset_dict['width'])
m = coco_mask.decode(rle)
# sometimes there are multiple binary map (corresponding to multiple segs)
m = np.sum(m, axis=2)
else:
# directly read from mask file
while True:
try:
m = utils.read_image(ann["mask_file"], format=self.img_format)
break
except:
print('Image loading error:', ann["mask_file"])
m = np.sum(m, axis=2)
m = 1 * (m > 0)
m = m.astype(np.uint8) # convert to np.uint8
m = transforms.apply_segmentation(m[:,:,None])[:,:,0]
if rotate_time > 0:
m = np.rot90(m, rotate_time)
masks_grd += [m]
# random select a sentence of a single annotation.
rand_index = random.randint(0, len(ann['sentences'])-1)
texts_grd += [ann['sentences'][rand_index]['raw'].lower()]
# max_len = min(grounding_len, len(texts_grd))
max_len = len(masks_grd)
indices = np.random.permutation(max_len)
texts_grd = list(np.array(texts_grd)[indices])
masks_grd = torch.tensor(np.stack(masks_grd)[indices])
hash_grd = np.array([hash(txt) for txt in texts_grd])
else:
masks_grd = instances.gt_masks.tensor
mode = 'class'
if len(masks_grd) == 0:
masks_grd = torch.tensor([])
texts_grd = ['none']
hash_grd = np.array([hash(txt) for txt in texts_grd])
else:
biomed_classes = ['liver', 'lung', 'kidney', 'pancreas', 'heart anatomies', 'brain anatomies',
'eye anatomies', 'vessel', 'other organ', 'tumor', 'infection', 'other lesion',
'fluid disturbance', 'other abnormality', 'histology structure', 'other']
if self.binary_classes:
biomed_classes = ['target']
texts_grd = np.array(biomed_classes)
hash_grd = np.array([hash(txt) for txt in texts_grd])
unique_hash_grd = np.unique(hash_grd)
np.random.shuffle(unique_hash_grd)
max_len = min(grounding_len, len(unique_hash_grd))
indices = np.random.permutation(max_len)
selected_unique_hash_grd = unique_hash_grd[indices]
selected_mask = np.in1d(hash_grd, selected_unique_hash_grd)
texts_grd = texts_grd[selected_mask]
hash_grd = hash_grd[selected_mask]
masks_grd = masks_grd[selected_mask]
texts_grd = [prompt_engineering(text.replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \
for text in texts_grd]
groundings = {'masks': masks_grd, 'texts': texts_grd, 'mode': mode, 'hash': hash_grd}
dataset_dict["groundings"] = groundings
assert len(masks_grd) == len(dataset_dict['grounding_info']), f"len(masks_grd)={len(masks_grd)}, len(dataset_dict['grounding_info'])={len(dataset_dict['grounding_info'])}, mask shape={masks_grd.shape}, max_len={max_len}, grounding_len={grounding_len}, len(texts_grd)={len(texts_grd)}, len(hash_grd)={len(hash_grd)}"
# gt_masks_orisize = torch.stack([torch.from_numpy(m.squeeze(-1)) for m in masks_orig])
# dataset_dict['gt_masks_orisize'] = gt_masks_orisize # (nm,h,w)
return dataset_dict