Spaces:
Runtime error
Runtime error
This PR upgrades the space (model & parameters) (#1)
Browse files- This PR upgrades the space (model & parameters) (dd2990fe38032ac0e4816d5dfd552756dc849ce4)
Co-authored-by: Fabrice TIERCELIN <[email protected]>
- README.md +12 -1
- app.py +302 -51
- requirements.txt +1 -5
README.md
CHANGED
@@ -3,10 +3,21 @@ title: Inpaint
|
|
3 |
emoji: 🦀
|
4 |
colorFrom: purple
|
5 |
colorTo: gray
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.41.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
3 |
emoji: 🦀
|
4 |
colorFrom: purple
|
5 |
colorTo: gray
|
6 |
+
tags:
|
7 |
+
- Image-to-Image
|
8 |
+
- Image-2-Image
|
9 |
+
- Img-to-Img
|
10 |
+
- Img-2-Img
|
11 |
+
- SDXL
|
12 |
+
- Stable Diffusion
|
13 |
+
- language models
|
14 |
+
- LLMs
|
15 |
sdk: gradio
|
16 |
sdk_version: 4.41.0
|
17 |
app_file: app.py
|
18 |
pinned: false
|
19 |
+
license: mit
|
20 |
+
short_description: Modifies one detail of your image, at any resolution, freely
|
21 |
---
|
22 |
|
23 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,56 +1,307 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
import numpy as np
|
4 |
-
|
|
|
|
|
5 |
import torch
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
demo.launch(show_error=True)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
+
import time
|
4 |
+
import math
|
5 |
+
import random
|
6 |
import torch
|
7 |
+
import spaces
|
8 |
+
|
9 |
+
from diffusers import StableDiffusionXLInpaintPipeline
|
10 |
+
from PIL import Image, ImageFilter, ImageEnhance
|
11 |
+
import PIL.ImageOps
|
12 |
+
|
13 |
+
max_64_bit_int = 2**63 - 1
|
14 |
+
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
device = "cuda"
|
17 |
+
floatType = torch.float16
|
18 |
+
variant = "fp16"
|
19 |
+
else:
|
20 |
+
device = "cpu"
|
21 |
+
floatType = torch.float32
|
22 |
+
variant = None
|
23 |
+
|
24 |
+
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
|
25 |
+
pipe = pipe.to(device)
|
26 |
+
|
27 |
+
def update_seed(is_randomize_seed, seed):
|
28 |
+
if is_randomize_seed:
|
29 |
+
return random.randint(0, max_64_bit_int)
|
30 |
+
return seed
|
31 |
+
|
32 |
+
def toggle_debug(is_debug_mode):
|
33 |
+
return [gr.update(visible = is_debug_mode)] * 2
|
34 |
+
|
35 |
+
def check(
|
36 |
+
source_img,
|
37 |
+
prompt,
|
38 |
+
uploaded_mask,
|
39 |
+
negative_prompt,
|
40 |
+
num_inference_steps,
|
41 |
+
guidance_scale,
|
42 |
+
image_guidance_scale,
|
43 |
+
strength,
|
44 |
+
denoising_steps,
|
45 |
+
is_randomize_seed,
|
46 |
+
seed,
|
47 |
+
debug_mode,
|
48 |
+
progress = gr.Progress()
|
49 |
+
):
|
50 |
+
if source_img is None:
|
51 |
+
raise gr.Error("Please provide an image.")
|
52 |
+
|
53 |
+
if prompt is None or prompt == "":
|
54 |
+
raise gr.Error("Please provide a prompt input.")
|
55 |
+
|
56 |
+
def inpaint(
|
57 |
+
source_img,
|
58 |
+
prompt,
|
59 |
+
uploaded_mask,
|
60 |
+
negative_prompt,
|
61 |
+
num_inference_steps,
|
62 |
+
guidance_scale,
|
63 |
+
image_guidance_scale,
|
64 |
+
strength,
|
65 |
+
denoising_steps,
|
66 |
+
is_randomize_seed,
|
67 |
+
seed,
|
68 |
+
debug_mode,
|
69 |
+
progress = gr.Progress()
|
70 |
+
):
|
71 |
+
check(
|
72 |
+
source_img,
|
73 |
+
prompt,
|
74 |
+
uploaded_mask,
|
75 |
+
negative_prompt,
|
76 |
+
num_inference_steps,
|
77 |
+
guidance_scale,
|
78 |
+
image_guidance_scale,
|
79 |
+
strength,
|
80 |
+
denoising_steps,
|
81 |
+
is_randomize_seed,
|
82 |
+
seed,
|
83 |
+
debug_mode
|
84 |
)
|
85 |
+
start = time.time()
|
86 |
+
progress(0, desc = "Preparing data...")
|
87 |
+
|
88 |
+
if negative_prompt is None:
|
89 |
+
negative_prompt = ""
|
90 |
+
|
91 |
+
if num_inference_steps is None:
|
92 |
+
num_inference_steps = 25
|
93 |
+
|
94 |
+
if guidance_scale is None:
|
95 |
+
guidance_scale = 7
|
96 |
+
|
97 |
+
if image_guidance_scale is None:
|
98 |
+
image_guidance_scale = 1.1
|
99 |
+
|
100 |
+
if strength is None:
|
101 |
+
strength = 0.99
|
102 |
+
|
103 |
+
if denoising_steps is None:
|
104 |
+
denoising_steps = 1000
|
105 |
+
|
106 |
+
if seed is None:
|
107 |
+
seed = random.randint(0, max_64_bit_int)
|
108 |
+
|
109 |
+
random.seed(seed)
|
110 |
+
#pipe = pipe.manual_seed(seed)
|
111 |
+
|
112 |
+
input_image = source_img["background"].convert("RGB")
|
113 |
+
|
114 |
+
original_height, original_width, original_channel = np.array(input_image).shape
|
115 |
+
output_width = original_width
|
116 |
+
output_height = original_height
|
117 |
+
|
118 |
+
if uploaded_mask is None:
|
119 |
+
mask_image = source_img["layers"][0].convert("RGB")
|
120 |
+
else:
|
121 |
+
mask_image = uploaded_mask.convert("RGB")
|
122 |
+
mask_image = mask_image.resize((original_width, original_height))
|
123 |
+
|
124 |
+
# Limited to 1 million pixels
|
125 |
+
if 1024 * 1024 < output_width * output_height:
|
126 |
+
factor = ((1024 * 1024) / (output_width * output_height))**0.5
|
127 |
+
process_width = math.floor(output_width * factor)
|
128 |
+
process_height = math.floor(output_height * factor)
|
129 |
+
|
130 |
+
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
|
131 |
+
else:
|
132 |
+
process_width = output_width
|
133 |
+
process_height = output_height
|
134 |
+
|
135 |
+
limitation = "";
|
136 |
+
|
137 |
+
# Width and height must be multiple of 8
|
138 |
+
if (process_width % 8) != 0 or (process_height % 8) != 0:
|
139 |
+
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
140 |
+
process_width = process_width - (process_width % 8) + 8
|
141 |
+
process_height = process_height - (process_height % 8) + 8
|
142 |
+
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
|
143 |
+
process_width = process_width - (process_width % 8) + 8
|
144 |
+
process_height = process_height - (process_height % 8)
|
145 |
+
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
146 |
+
process_width = process_width - (process_width % 8)
|
147 |
+
process_height = process_height - (process_height % 8) + 8
|
148 |
+
else:
|
149 |
+
process_width = process_width - (process_width % 8)
|
150 |
+
process_height = process_height - (process_height % 8)
|
151 |
+
|
152 |
+
progress(None, desc = "Processing...")
|
153 |
+
output_image = inpaint_on_gpu(
|
154 |
+
seed,
|
155 |
+
process_width,
|
156 |
+
process_height,
|
157 |
+
prompt,
|
158 |
+
negative_prompt,
|
159 |
+
input_image,
|
160 |
+
mask_image,
|
161 |
+
num_inference_steps,
|
162 |
+
guidance_scale,
|
163 |
+
image_guidance_scale,
|
164 |
+
strength,
|
165 |
+
denoising_steps
|
166 |
+
)
|
167 |
+
|
168 |
+
if limitation != "":
|
169 |
+
output_image = output_image.resize((output_width, output_height))
|
170 |
+
|
171 |
+
if debug_mode == False:
|
172 |
+
input_image = None
|
173 |
+
mask_image = None
|
174 |
+
|
175 |
+
end = time.time()
|
176 |
+
secondes = int(end - start)
|
177 |
+
minutes = math.floor(secondes / 60)
|
178 |
+
secondes = secondes - (minutes * 60)
|
179 |
+
hours = math.floor(minutes / 60)
|
180 |
+
minutes = minutes - (hours * 60)
|
181 |
+
return [
|
182 |
+
output_image,
|
183 |
+
("Start again to get a different result. " if is_randomize_seed else "") + "The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
|
184 |
+
input_image,
|
185 |
+
mask_image
|
186 |
+
]
|
187 |
+
|
188 |
+
def inpaint_on_gpu2(
|
189 |
+
seed,
|
190 |
+
process_width,
|
191 |
+
process_height,
|
192 |
+
prompt,
|
193 |
+
negative_prompt,
|
194 |
+
input_image,
|
195 |
+
mask_image,
|
196 |
+
num_inference_steps,
|
197 |
+
guidance_scale,
|
198 |
+
image_guidance_scale,
|
199 |
+
strength,
|
200 |
+
denoising_steps
|
201 |
+
):
|
202 |
+
return input_image
|
203 |
+
|
204 |
+
@spaces.GPU(duration=420)
|
205 |
+
def inpaint_on_gpu(
|
206 |
+
seed,
|
207 |
+
process_width,
|
208 |
+
process_height,
|
209 |
+
prompt,
|
210 |
+
negative_prompt,
|
211 |
+
input_image,
|
212 |
+
mask_image,
|
213 |
+
num_inference_steps,
|
214 |
+
guidance_scale,
|
215 |
+
image_guidance_scale,
|
216 |
+
strength,
|
217 |
+
denoising_steps
|
218 |
+
):
|
219 |
+
return pipe(
|
220 |
+
seeds = [seed],
|
221 |
+
width = process_width,
|
222 |
+
height = process_height,
|
223 |
+
prompt = prompt,
|
224 |
+
negative_prompt = negative_prompt,
|
225 |
+
image = input_image,
|
226 |
+
mask_image = mask_image,
|
227 |
+
num_inference_steps = num_inference_steps,
|
228 |
+
guidance_scale = guidance_scale,
|
229 |
+
image_guidance_scale = image_guidance_scale,
|
230 |
+
strength = strength,
|
231 |
+
denoising_steps = denoising_steps,
|
232 |
+
show_progress_bar = True
|
233 |
+
).images[0]
|
234 |
+
|
235 |
+
with gr.Blocks() as interface:
|
236 |
+
gr.HTML(
|
237 |
+
"""
|
238 |
+
<h1 style="text-align: center;">Inpaint</h1>
|
239 |
+
<p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
|
240 |
+
<br/>
|
241 |
+
|
242 |
+
"""
|
243 |
+
)
|
244 |
+
with gr.Column():
|
245 |
+
source_img = gr.ImageMask(label = "Your image (click on the landscape 🌄 to upload your image; click on the pen 🖌️ to draw the mask)", type = "pil", brush=gr.Brush(colors=["white"], color_mode="fixed"))
|
246 |
+
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2)
|
247 |
+
with gr.Accordion("Upload a mask", open = False):
|
248 |
+
uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources = ["upload"], type = "pil")
|
249 |
+
with gr.Accordion("Advanced options", open = False):
|
250 |
+
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
|
251 |
+
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
252 |
+
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
253 |
+
image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
|
254 |
+
strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch")
|
255 |
+
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
256 |
+
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
257 |
+
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
|
258 |
+
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
|
259 |
+
|
260 |
+
submit = gr.Button("🚀 Inpaint", variant = "primary")
|
261 |
+
|
262 |
+
inpainted_image = gr.Image(label = "Inpainted image")
|
263 |
+
information = gr.HTML()
|
264 |
+
original_image = gr.Image(label = "Original image", visible = False)
|
265 |
+
mask_image = gr.Image(label = "Mask image", visible = False)
|
266 |
+
|
267 |
+
submit.click(update_seed, inputs = [
|
268 |
+
randomize_seed, seed
|
269 |
+
], outputs = [
|
270 |
+
seed
|
271 |
+
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
|
272 |
+
original_image,
|
273 |
+
mask_image
|
274 |
+
], queue = False, show_progress = False).then(check, inputs = [
|
275 |
+
source_img,
|
276 |
+
prompt,
|
277 |
+
uploaded_mask,
|
278 |
+
negative_prompt,
|
279 |
+
num_inference_steps,
|
280 |
+
guidance_scale,
|
281 |
+
image_guidance_scale,
|
282 |
+
strength,
|
283 |
+
denoising_steps,
|
284 |
+
randomize_seed,
|
285 |
+
seed,
|
286 |
+
debug_mode
|
287 |
+
], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
|
288 |
+
source_img,
|
289 |
+
prompt,
|
290 |
+
uploaded_mask,
|
291 |
+
negative_prompt,
|
292 |
+
num_inference_steps,
|
293 |
+
guidance_scale,
|
294 |
+
image_guidance_scale,
|
295 |
+
strength,
|
296 |
+
denoising_steps,
|
297 |
+
randomize_seed,
|
298 |
+
seed,
|
299 |
+
debug_mode
|
300 |
+
], outputs = [
|
301 |
+
inpainted_image,
|
302 |
+
information,
|
303 |
+
original_image,
|
304 |
+
mask_image
|
305 |
+
], scroll_to_output = True)
|
306 |
|
307 |
+
interface.queue().launch()
|
|
requirements.txt
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
diffusers
|
2 |
torch
|
3 |
-
torchvision
|
4 |
-
pillow
|
5 |
-
numpy
|
6 |
transformers
|
7 |
-
|
|
|
|
|
1 |
torch
|
|
|
|
|
|
|
2 |
transformers
|
3 |
+
diffusers
|