|
|
import gradio as gr |
|
|
import torch |
|
|
import torchaudio |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
class M5(nn.Module): |
|
|
def __init__(self, n_input=1, n_output=35, stride=16, n_channel=32): |
|
|
super().__init__() |
|
|
self.conv1 = nn.Conv1d(n_input, n_channel, kernel_size=80, stride=stride) |
|
|
self.bn1 = nn.BatchNorm1d(n_channel) |
|
|
self.pool1 = nn.MaxPool1d(4) |
|
|
self.conv2 = nn.Conv1d(n_channel, n_channel, kernel_size=3) |
|
|
self.bn2 = nn.BatchNorm1d(n_channel) |
|
|
self.pool2 = nn.MaxPool1d(4) |
|
|
self.conv3 = nn.Conv1d(n_channel, 2 * n_channel, kernel_size=3) |
|
|
self.bn3 = nn.BatchNorm1d(2 * n_channel) |
|
|
self.pool3 = nn.MaxPool1d(4) |
|
|
self.conv4 = nn.Conv1d(2 * n_channel, 2 * n_channel, kernel_size=3) |
|
|
self.bn4 = nn.BatchNorm1d(2 * n_channel) |
|
|
self.pool4 = nn.MaxPool1d(4) |
|
|
self.fc1 = nn.Linear(2 * n_channel, n_output) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.conv1(x) |
|
|
x = F.relu(self.bn1(x)) |
|
|
x = self.pool1(x) |
|
|
x = self.conv2(x) |
|
|
x = F.relu(self.bn2(x)) |
|
|
x = self.pool2(x) |
|
|
x = self.conv3(x) |
|
|
x = F.relu(self.bn3(x)) |
|
|
x = self.pool3(x) |
|
|
x = self.conv4(x) |
|
|
x = F.relu(self.bn4(x)) |
|
|
x = self.pool4(x) |
|
|
x = F.avg_pool1d(x, x.shape[-1]) |
|
|
x = x.permute(0, 2, 1) |
|
|
x = self.fc1(x) |
|
|
return F.log_softmax(x, dim=2) |
|
|
|
|
|
|
|
|
labels = ['backward', 'bed', 'bird', 'cat', 'dog', 'down', 'eight', 'five', 'follow', |
|
|
'forward', 'four', 'go', 'happy', 'house', 'learn', 'left', 'marvin', 'nine', |
|
|
'no', 'off', 'on', 'one', 'right', 'seven', 'sheila', 'six', 'stop', 'three', |
|
|
'tree', 'two', 'up', 'visual', 'wow', 'yes', 'zero'] |
|
|
|
|
|
|
|
|
def label_to_index(word): |
|
|
return torch.tensor(labels.index(word)) |
|
|
|
|
|
def index_to_label(index): |
|
|
return labels[index] |
|
|
|
|
|
def get_likely_index(tensor): |
|
|
return tensor.argmax(dim=-1) |
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
model = M5() |
|
|
model.load_state_dict(torch.load("modelo_entrenado.pth", map_location=device)) |
|
|
model.to(device) |
|
|
model.eval() |
|
|
|
|
|
|
|
|
def predict(audio): |
|
|
waveform, sample_rate = torchaudio.load(audio) |
|
|
transform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=8000).to(device) |
|
|
waveform = waveform.to(device) |
|
|
waveform = transform(waveform) |
|
|
|
|
|
with torch.no_grad(): |
|
|
output = model(waveform.unsqueeze(0)) |
|
|
tensor = get_likely_index(output) |
|
|
prediction = index_to_label(tensor.squeeze()) |
|
|
return prediction |
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=predict, |
|
|
inputs=gr.Audio(type="filepath"), |
|
|
outputs="text", |
|
|
title="Reconocimiento de comandos de voz", |
|
|
description="Graba un comando de voz y el modelo lo predecir谩." |
|
|
) |
|
|
|
|
|
|
|
|
iface.launch(share=True) |