sebastiansarasti commited on
Commit
7713d80
·
verified ·
1 Parent(s): bd09431

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +14 -17
model.py CHANGED
@@ -5,35 +5,32 @@ class ModelColorization(nn.Module, PyTorchModelHubMixin):
5
  def __init__(self):
6
  super(ModelColorization, self).__init__()
7
  self.encoder = nn.Sequential(
8
- nn.Conv2d(1, 256, kernel_size=3, stride=1, padding=1),
9
  nn.MaxPool2d(kernel_size=2, stride=2),
10
  nn.ReLU(),
11
- nn.BatchNorm2d(256),
12
- nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
13
  nn.MaxPool2d(kernel_size=2, stride=2),
14
  nn.ReLU(),
15
- nn.BatchNorm2d(128),
16
- nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
17
  nn.MaxPool2d(kernel_size=2, stride=2),
18
  nn.ReLU(),
19
- nn.BatchNorm2d(64),
20
  nn.Flatten(),
21
- nn.Linear(64*16*16, 3000),
22
  )
23
  self.decoder = nn.Sequential(
24
- nn.Linear(3000, 64 * 16 * 16),
25
  nn.ReLU(),
26
-
27
- nn.Unflatten(1, (64, 16, 16)),
28
- nn.ConvTranspose2d(64, 128, kernel_size=2, stride=2),
29
  nn.ReLU(),
30
- nn.BatchNorm2d(128),
31
-
32
- nn.ConvTranspose2d(128, 256, kernel_size=2, stride=2),
33
  nn.ReLU(),
34
- nn.BatchNorm2d(256),
35
-
36
- nn.ConvTranspose2d(256, 3, kernel_size=2, stride=2),
37
  nn.Sigmoid()
38
  )
39
 
 
5
  def __init__(self):
6
  super(ModelColorization, self).__init__()
7
  self.encoder = nn.Sequential(
8
+ nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
9
  nn.MaxPool2d(kernel_size=2, stride=2),
10
  nn.ReLU(),
11
+ nn.BatchNorm2d(64),
12
+ nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
13
  nn.MaxPool2d(kernel_size=2, stride=2),
14
  nn.ReLU(),
15
+ nn.BatchNorm2d(32),
16
+ nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
17
  nn.MaxPool2d(kernel_size=2, stride=2),
18
  nn.ReLU(),
19
+ nn.BatchNorm2d(16),
20
  nn.Flatten(),
21
+ nn.Linear(16*45*45, 4000),
22
  )
23
  self.decoder = nn.Sequential(
24
+ nn.Linear(4000, 16 * 45 * 45),
25
  nn.ReLU(),
26
+ nn.Unflatten(1, (16, 45, 45)),
27
+ nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
 
28
  nn.ReLU(),
29
+ nn.BatchNorm2d(32),
30
+ nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
 
31
  nn.ReLU(),
32
+ nn.BatchNorm2d(64),
33
+ nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
 
34
  nn.Sigmoid()
35
  )
36