Update model.py
Browse files
model.py
CHANGED
@@ -5,35 +5,32 @@ class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
|
5 |
def __init__(self):
|
6 |
super(ModelColorization, self).__init__()
|
7 |
self.encoder = nn.Sequential(
|
8 |
-
nn.Conv2d(1,
|
9 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
10 |
nn.ReLU(),
|
11 |
-
nn.BatchNorm2d(
|
12 |
-
nn.Conv2d(
|
13 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
14 |
nn.ReLU(),
|
15 |
-
nn.BatchNorm2d(
|
16 |
-
nn.Conv2d(
|
17 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
18 |
nn.ReLU(),
|
19 |
-
nn.BatchNorm2d(
|
20 |
nn.Flatten(),
|
21 |
-
nn.Linear(
|
22 |
)
|
23 |
self.decoder = nn.Sequential(
|
24 |
-
nn.Linear(
|
25 |
nn.ReLU(),
|
26 |
-
|
27 |
-
nn.
|
28 |
-
nn.ConvTranspose2d(64, 128, kernel_size=2, stride=2),
|
29 |
nn.ReLU(),
|
30 |
-
nn.BatchNorm2d(
|
31 |
-
|
32 |
-
nn.ConvTranspose2d(128, 256, kernel_size=2, stride=2),
|
33 |
nn.ReLU(),
|
34 |
-
nn.BatchNorm2d(
|
35 |
-
|
36 |
-
nn.ConvTranspose2d(256, 3, kernel_size=2, stride=2),
|
37 |
nn.Sigmoid()
|
38 |
)
|
39 |
|
|
|
5 |
def __init__(self):
|
6 |
super(ModelColorization, self).__init__()
|
7 |
self.encoder = nn.Sequential(
|
8 |
+
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
|
9 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
10 |
nn.ReLU(),
|
11 |
+
nn.BatchNorm2d(64),
|
12 |
+
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
|
13 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
14 |
nn.ReLU(),
|
15 |
+
nn.BatchNorm2d(32),
|
16 |
+
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1),
|
17 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
18 |
nn.ReLU(),
|
19 |
+
nn.BatchNorm2d(16),
|
20 |
nn.Flatten(),
|
21 |
+
nn.Linear(16*45*45, 4000),
|
22 |
)
|
23 |
self.decoder = nn.Sequential(
|
24 |
+
nn.Linear(4000, 16 * 45 * 45),
|
25 |
nn.ReLU(),
|
26 |
+
nn.Unflatten(1, (16, 45, 45)),
|
27 |
+
nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
|
28 |
nn.ReLU(),
|
29 |
+
nn.BatchNorm2d(32),
|
30 |
+
nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
|
31 |
nn.ReLU(),
|
32 |
+
nn.BatchNorm2d(64),
|
33 |
+
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
|
34 |
nn.Sigmoid()
|
35 |
)
|
36 |
|