File size: 6,631 Bytes
51f736d
 
 
 
 
 
 
 
e82d36a
 
51f736d
651dda2
fc866a2
e4b9383
 
651dda2
 
e4b9383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651dda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de543cb
 
 
651dda2
 
de543cb
 
 
 
 
 
 
 
51f736d
 
 
e82d36a
51f736d
e82d36a
51f736d
e82d36a
 
 
51f736d
 
e82d36a
de543cb
 
51f736d
 
e82d36a
51f736d
 
 
 
 
 
e82d36a
 
 
 
 
 
 
 
 
51f736d
 
 
e82d36a
 
 
51f736d
 
e82d36a
 
51f736d
 
e82d36a
51f736d
 
 
e82d36a
51f736d
 
e82d36a
 
51f736d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import streamlit as st
from PIL import Image, ImageOps
import cv2
import numpy as np
import random
import time
import seaborn as sns

from cv_funcs import *
from torchvision_funcs import *


from backgroundremover.utilities import download_download_files_from_github
import torch
import os
from hsh.library.hash import Hasher
from torchvision import transforms

def load_model(model_name: str = "u2net"):
    hasher = Hasher()

    model = {
        'u2netp': (u2net.U2NETP,
                   'e4f636406ca4e2af789941e7f139ee2e',
                   '1rbSTGKAE-MTxBYHd-51l2hMOQPT_7EPy',
                   'U2NET_PATH'),
        'u2net': (u2net.U2NET,
                  '09fb4e49b7f785c9f855baf94916840a',
                  '1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ',
                  'U2NET_PATH'),
        'u2net_human_seg': (u2net.U2NET,
                            '347c3d51b01528e5c6c071e3cff1cb55',
                            '1-Yg0cxgrNhHP-016FPdp902BR-kSsA4P',
                            'U2NET_PATH')
    }[model_name]

    if model_name == "u2net":
        net = u2net.U2NET(3, 1)
        path = os.environ.get(
            "U2NET_PATH",
            os.path.expanduser(os.path.join("~", ".u2net", model_name + ".pth")),
        )
        if (
            not os.path.exists(path)
            or hasher.md5(path) != "09fb4e49b7f785c9f855baf94916840a"
        ):
            download_downloadfiles_from_github(
                path, model_name
            )
    else:
        print("Choose between u2net, u2net_human_seg or u2netp", file=sys.stderr)

    try:
        if torch.cuda.is_available():
            net.load_state_dict(torch.load(path))
            net.to(torch.device("cuda"))
        else:
            net.load_state_dict(
                torch.load(
                    path,
                    map_location="cpu",
                )
            )
    except FileNotFoundError:
        raise FileNotFoundError(
            errno.ENOENT, os.strerror(errno.ENOENT), model_name + ".pth"
        )

    net.eval()

    return net

def norm_pred(d):
    ma = torch.max(d)
    mi = torch.min(d)
    dn = (d - mi) / (ma - mi)

    return dn


def preprocess(image):
    label_3 = np.zeros(image.shape)
    label = np.zeros(label_3.shape[0:2])

    if 3 == len(label_3.shape):
        label = label_3[:, :, 0]
    elif 2 == len(label_3.shape):
        label = label_3

    if 3 == len(image.shape) and 2 == len(label.shape):
        label = label[:, :, np.newaxis]
    elif 2 == len(image.shape) and 2 == len(label.shape):
        image = image[:, :, np.newaxis]
        label = label[:, :, np.newaxis]

    transform = transforms.Compose(
        [data_loader.RescaleT(320), data_loader.ToTensorLab(flag=0)]
    )
    sample = transform({"imidx": np.array([0]), "image": image, "label": label})

    return sample


def predict(net, item):
    sample = preprocess(item)

    with torch.no_grad():

        if torch.cuda.is_available():
            inputs_test = torch.cuda.FloatTensor(
                sample["image"].unsqueeze(0).cuda().float()
            )
        else:
            inputs_test = torch.FloatTensor(sample["image"].unsqueeze(0).float())

        d1, d2, d3, d4, d5, d6, d7 = net(inputs_test)

        pred = d1[:, 0, :, :]
        predict = norm_pred(pred)

        predict = predict.squeeze()
        predict_np = predict.cpu().detach().numpy()
        img = Image.fromarray(predict_np * 255).convert("RGB")

        del d1, d2, d3, d4, d5, d6, d7, pred, predict, predict_np, inputs_test, sample

        return img

def remove_bg(img):
    img_arry = np.array(img)
    model = load_model(model_name="u2net")
    mask = predict(model, img_arry)
    mask = mask.resize(img.size)

    mask_arry = np.array(mask)
    mask_arry[mask_arry>0] = 1
    img_masked = Image.fromarray(cv2.multiply(img_arry, mask_arry))
    index_masked = np.where(np.array(mask)==0)
    return img_masked, index_masked

@st.cache
def show_generated_image(image):
    st.image(image)
    
@st.cache(suppress_st_warning=True)
def randomize_palette_colors(n_rows, n_cols, palettes=['Set1', 'Set3', 'Spectral'], seed=time.time(), n_times=10):
    random.seed(seed)
    colors = [sns.color_palette(palette, n_rows*n_cols*n_times) for palette in palettes]
    _ = [random.shuffle(color) for color in colors]
    return colors

@st.cache(suppress_st_warning=True)
def remove_image_background(image):
    #return deeplabv3_remove_bg(image)
    return remove_bg(img)

title = 'Andy Warhol like Image Generator'
st.set_page_config(page_title=title, page_icon='favicon.jpeg', layout='centered')
st.title(title)
uploaded_file = st.file_uploader('Choose an image file')
if uploaded_file is None: uploaded_file = './sample.jpg'

if uploaded_file is not None:
    im = Image.open(uploaded_file)
    im.thumbnail((1000, 1000),resample=Image.BICUBIC) # resize
    
    is_masked = st.checkbox('With background masking? (3 colors)')
    if is_masked:
       im_masked, index_masked = remove_image_background(im)
       st.image(im_masked, caption='Masked image')        
    else: st.image(im, caption='Original')
    
    im_gray =  np.array(im.convert('L'))
    thresh, _img = cv2.threshold(im_gray, 0, 255, cv2.THRESH_OTSU)
    
    n_rows, n_cols = st.number_input('Rows', value=3), st.number_input('Columns', value=3)

    thresh = st.slider('Threshold', value=thresh, min_value=0.0, max_value=255.0)        
    colors = randomize_palette_colors(n_rows, n_cols, seed=0)
    
    if st.button('Shuffle colors'):
        colors = randomize_palette_colors(n_rows, n_cols, seed=time.time())            
    
    if True or st.button('Generate'):
        ims_generated = []

        for row in range(n_rows):
            for col in range(n_cols):
                i_color = n_cols * row + col
                rgbs = [np.array(color[i_color])*np.array([255, 255, 255]).tolist() for color in colors]
                ims_col = np.empty((*im_gray.shape, 3))
                for i in range(3): # RGB
                     ims_col[:, :, i] = (im_gray <= thresh) * rgbs[0][i] + (im_gray > thresh) * rgbs[1][i]
                     if is_masked: ims_col[:, :, i][index_masked] = rgbs[2][i]
                if col == 0:
                    im_col_concat = Image.fromarray(ims_col.astype(np.uint8))
                else:
                    im_col_concat = get_concat_h(im_col_concat, Image.fromarray(ims_col.astype(np.uint8)))
            if row == 0:
                im_generated = im_col_concat
            else:
                im_generated = get_concat_v(im_generated, im_col_concat)
#     if 'im_generated' in locals():
        st.image(im_generated)