Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
import io | |
model_pipeline = pipeline("object-detection", model="sergiopaniego/detr-resnet-50-dc5-fashionpedia-finetuned") | |
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] | |
def get_output_figure(pil_img, results, threshold): | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
colors = COLORS * 100 | |
for result in results: | |
score = result['score'] | |
label = result['label'] | |
box = list(result['box'].values()) | |
if score > threshold: | |
c = COLORS[hash(label) % len(COLORS)] | |
ax.add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3)) | |
text = f'{label}: {score:0.2f}' | |
ax.text(box[0], box[1], text, fontsize=15, | |
bbox=dict(facecolor='yellow', alpha=0.5)) | |
plt.axis('off') | |
return plt.gcf() | |
def detect(image): | |
results = model_pipeline(image) | |
print(results) | |
output_figure = get_output_figure(image, results, threshold=0.7) | |
buf = io.BytesIO() | |
output_figure.savefig(buf, bbox_inches='tight') | |
buf.seek(0) | |
output_pil_img = Image.open(buf) | |
return output_pil_img | |
with gr.Blocks() as demo: | |
gr.Markdown("# Object detection with DETR fine tuned on detection-datasets/fashionpedia") | |
gr.Markdown( | |
""" | |
This application uses a fine tuned DETR (DEtection TRansformers) to detect objects on images. | |
This version was trained using detection-datasets/fashionpedia dataset. | |
You can load an image and see the predictions for the objects detected. | |
""" | |
) | |
gr.Interface( | |
fn=detect, | |
inputs=gr.Image(label="Input image", type="pil"), | |
outputs=[ | |
gr.Image(label="Output prediction", type="pil") | |
] | |
) | |
demo.launch(show_error=True) |