import gradio as gr import spaces import torch from PIL import Image from transformers import pipeline import matplotlib.pyplot as plt import io model_pipeline = pipeline("object-detection", model="sergiopaniego/detr-resnet-50-dc5-fashionpedia-finetuned") COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] def get_output_figure(pil_img, results, threshold): plt.figure(figsize=(16, 10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for result in results: score = result['score'] label = result['label'] box = list(result['box'].values()) if score > threshold: c = COLORS[hash(label) % len(COLORS)] ax.add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3)) text = f'{label}: {score:0.2f}' ax.text(box[0], box[1], text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') return plt.gcf() @spaces.GPU def detect(image): results = model_pipeline(image) print(results) output_figure = get_output_figure(image, results, threshold=0.7) buf = io.BytesIO() output_figure.savefig(buf, bbox_inches='tight') buf.seek(0) output_pil_img = Image.open(buf) return output_pil_img with gr.Blocks() as demo: gr.Markdown("# Object detection with DETR fine tuned on detection-datasets/fashionpedia") gr.Markdown( """ This application uses a fine tuned DETR (DEtection TRansformers) to detect objects on images. This version was trained using detection-datasets/fashionpedia dataset. You can load an image and see the predictions for the objects detected. """ ) gr.Interface( fn=detect, inputs=gr.Image(label="Input image", type="pil"), outputs=[ gr.Image(label="Output prediction", type="pil") ] ) demo.launch(show_error=True)