Spaces:
Sleeping
Sleeping
File size: 4,846 Bytes
4d6e8c2 fe4a4cb 3b09640 767af86 a5fcc20 fe4a4cb 4d6e8c2 fe4a4cb 4d6e8c2 3b09640 4d6e8c2 99568ae 1c33274 70f5f26 fe4a4cb 3b09640 1c33274 70f5f26 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 70f5f26 4d6e8c2 fe4a4cb 4d6e8c2 fe4a4cb 3b09640 fe4a4cb 767af86 5c293a7 99f1647 99568ae 99f1647 99568ae 99f1647 99568ae 99f1647 99568ae 5c293a7 99f1647 5c293a7 99f1647 5c293a7 99568ae e554c0a 99f1647 5c293a7 99f1647 94d445b 99f1647 fe4a4cb 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 4d6e8c2 70f5f26 4d6e8c2 fe4a4cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
#import torch
#from torch.utils.data import DataLoader
#from /app/tasks/Model_Loader.py import M5, load_model
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Quantized M5"
ROUTE = "/audio"
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
#model_path = "quantized_teacher_m5_static.pth"
#model, device = load_model(model_path)
# def preprocess_audio(example, target_length=32000):
# """
# Convert dataset into tensors:
# - Convert to tensor
# - Normalize waveform
# - Pad/truncate to `target_length`
# """
# waveform = torch.tensor(example["audio"]["array"], dtype=torch.float32).unsqueeze(0) # Add batch dim
# # Normalize waveform
# waveform = (waveform - waveform.mean()) / (waveform.std() + 1e-6)
# # Pad or truncate to fixed length
# if waveform.shape[1] < target_length:
# pad = torch.zeros(1, target_length - waveform.shape[1])
# waveform = torch.cat((waveform, pad), dim=1) # Pad
# else:
# waveform = waveform[:, :target_length] # Truncate
# label = torch.tensor(example["label"], dtype=torch.long) # Ensure int64
# return {"waveform": waveform, "label": label}
# train_test = train_test.map(preprocess_audio, batched=True)
# test_dataset = train_test.map(preprocess_audio)
# train_loader = DataLoader(train_test, batch_size=32, shuffle=True)
true_labels = train_dataset["label"]
predictions = []
predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
# with torch.no_grad():
# for waveforms, labels in train_loader:
# waveforms, labels = waveforms.to(device), labels.to(device)
# outputs = model(waveforms)
# predicted_label = torch.argmax(F.softmax(outputs, dim=1), dim=1)
# true_labels.extend(labels.cpu().numpy())
# predicted_labels.extend(predicted_label.cpu().numpy())
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |