Spaces:
Sleeping
Sleeping
Create Model_Loader.py
Browse files- tasks/Model_Loader.py +38 -0
tasks/Model_Loader.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
class M5(torch.nn.Module):
|
4 |
+
def __init__(self, num_classes=10):
|
5 |
+
super(M5, self).__init__()
|
6 |
+
self.conv1 = torch.nn.Conv1d(in_channels=1, out_channels=32, kernel_size=80, stride=4)
|
7 |
+
self.bn1 = torch.nn.BatchNorm1d(32)
|
8 |
+
self.conv2 = torch.nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3)
|
9 |
+
self.bn2 = torch.nn.BatchNorm1d(64)
|
10 |
+
self.conv3 = torch.nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3)
|
11 |
+
self.bn3 = torch.nn.BatchNorm1d(128)
|
12 |
+
self.conv4 = torch.nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3)
|
13 |
+
self.bn4 = torch.nn.BatchNorm1d(256)
|
14 |
+
self.fc1 = torch.nn.Linear(256, num_classes)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
x = torch.nn.functional.relu(self.bn1(self.conv1(x)))
|
18 |
+
x = torch.nn.functional.max_pool1d(x, 4)
|
19 |
+
x = torch.nn.functional.relu(self.bn2(self.conv2(x)))
|
20 |
+
x = torch.nn.functional.max_pool1d(x, 4)
|
21 |
+
x = torch.nn.functional.relu(self.bn3(self.conv3(x)))
|
22 |
+
x = torch.nn.functional.max_pool1d(x, 4)
|
23 |
+
x = torch.nn.functional.relu(self.bn4(self.conv4(x)))
|
24 |
+
x = torch.nn.functional.max_pool1d(x, 4)
|
25 |
+
x = torch.mean(x, dim=2)
|
26 |
+
x = self.fc1(x)
|
27 |
+
return x
|
28 |
+
|
29 |
+
def load_model(model_path, num_classes=2):
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
model = M5(num_classes=num_classes).to(device)
|
32 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
33 |
+
model.eval() # Set model to evaluation mode
|
34 |
+
return model, device
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
model, device = load_model("m5_audio_classification.pth")
|
38 |
+
print("✅ Model successfully loaded!")
|