Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
5 |
-
from transformers import CLIPVisionModelWithProjection
|
6 |
-
from diffusers.utils import load_image
|
7 |
-
from PIL import Image
|
8 |
-
import os
|
9 |
-
import json
|
10 |
-
import gc
|
11 |
-
import traceback
|
12 |
-
|
13 |
-
STYLE_MAP = {
|
14 |
-
"pixar": [
|
15 |
-
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img0.png",
|
16 |
-
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img1.png",
|
17 |
-
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img2.png",
|
18 |
-
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img3.png",
|
19 |
-
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img4.png"
|
20 |
-
]
|
21 |
-
}
|
22 |
-
|
23 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
24 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
-
print(f"π Device: {device}, torch_dtype: {torch_dtype}")
|
26 |
-
|
27 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
28 |
-
"h94/IP-Adapter",
|
29 |
-
subfolder="models/image_encoder",
|
30 |
-
torch_dtype=torch_dtype,
|
31 |
-
)
|
32 |
-
|
33 |
-
pipeline = AutoPipelineForText2Image.from_pretrained(
|
34 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
35 |
-
torch_dtype=torch_dtype,
|
36 |
-
image_encoder=image_encoder,
|
37 |
-
variant="fp16" if torch.cuda.is_available() else None
|
38 |
-
).to(device)
|
39 |
-
|
40 |
-
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
41 |
-
pipeline.load_ip_adapter(
|
42 |
-
"h94/IP-Adapter",
|
43 |
-
subfolder="sdxl_models",
|
44 |
-
weight_name=[
|
45 |
-
"ip-adapter-plus_sdxl_vit-h.safetensors",
|
46 |
-
"ip-adapter-plus-face_sdxl_vit-h.safetensors"
|
47 |
-
]
|
48 |
-
)
|
49 |
-
pipeline.set_ip_adapter_scale([0.7, 0.3])
|
50 |
-
pipeline.enable_model_cpu_offload()
|
51 |
-
pipeline.enable_vae_tiling()
|
52 |
-
|
53 |
-
def generate_single_scene(data):
|
54 |
-
print("π₯ Single scene input received:")
|
55 |
-
print(json.dumps(data, indent=2))
|
56 |
-
|
57 |
-
try:
|
58 |
-
character_image_url = data["character_image_url"]
|
59 |
-
style = data["style"]
|
60 |
-
scene_prompt = data["scene"]
|
61 |
-
|
62 |
-
face_image = load_image(character_image_url)
|
63 |
-
style_images = [load_image(url) for url in STYLE_MAP.get(style, [])]
|
64 |
-
|
65 |
-
torch.cuda.empty_cache()
|
66 |
-
gc.collect()
|
67 |
-
|
68 |
-
result = pipeline(
|
69 |
-
prompt=scene_prompt,
|
70 |
-
ip_adapter_image=[style_images, face_image],
|
71 |
-
negative_prompt="blurry, bad anatomy, low quality",
|
72 |
-
width=512,
|
73 |
-
height=768,
|
74 |
-
guidance_scale=5.0,
|
75 |
-
num_inference_steps=15,
|
76 |
-
generator=torch.Generator(device).manual_seed(42)
|
77 |
-
)
|
78 |
-
|
79 |
-
image = result.images[0] if hasattr(result, "images") else result
|
80 |
-
print(f"πΌοΈ Image type: {type(image)}")
|
81 |
-
|
82 |
-
if isinstance(image, Image.Image):
|
83 |
-
print("β
Returning valid image object")
|
84 |
-
return image
|
85 |
-
else:
|
86 |
-
print("β Invalid image type. Not returning.")
|
87 |
-
return None
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
print(f"β Error: {e}")
|
91 |
-
traceback.print_exc()
|
92 |
-
return None
|
93 |
-
|
94 |
-
def generate_from_json(json_input_text):
|
95 |
-
try:
|
96 |
-
data = json.loads(json_input_text)
|
97 |
-
return generate_single_scene(data)
|
98 |
-
except Exception as e:
|
99 |
-
print(f"β JSON parse or generation error: {e}")
|
100 |
-
traceback.print_exc()
|
101 |
-
return None
|
102 |
-
|
103 |
-
iface = gr.Interface(
|
104 |
-
fn=generate_from_json,
|
105 |
-
inputs=gr.Textbox(label="Input JSON", lines=10, placeholder='{"character_image_url": "...", "style": "pixar", "scene": "..."}'),
|
106 |
-
outputs=gr.Image(label="Generated Scene"),
|
107 |
-
title="Single-Scene Storybook Generator",
|
108 |
-
description="Send one scene at a time to generate consistent character-based images."
|
109 |
-
)
|
110 |
-
|
111 |
-
iface.queue().launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|