File size: 6,062 Bytes
0fd80de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c1cc0
 
 
 
 
 
 
 
89f58c0
 
 
63c1cc0
 
 
 
 
 
 
 
0fd80de
63c1cc0
 
 
0fd80de
63c1cc0
 
 
 
0fd80de
63c1cc0
0fd80de
63c1cc0
 
 
 
89f58c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c1cc0
 
 
89f58c0
63c1cc0
 
52d6c73
63c1cc0
 
0fd80de
 
 
89f58c0
0fd80de
89f58c0
63c1cc0
89f58c0
63c1cc0
 
 
 
89f58c0
63c1cc0
 
 
89f58c0
 
63c1cc0
 
 
89f58c0
63c1cc0
 
 
89f58c0
63c1cc0
 
89f58c0
 
63c1cc0
 
 
89f58c0
63c1cc0
 
89f58c0
 
63c1cc0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# All the datasets will use the same format: a collection of HDF5 files with data cubes
# in t0_fields: scalar fields, like density, pressure, energy
#  the data is of shape (n_trajectories, n_time_steps, x, y)
# in t1_fields: vector fields, like velocity (size=2 => vx, vy)
#  the data is of shape (n_trajectories, n_time_steps, x, y, vx/vy)
# in t2_fields: tensor fields, like ???
#  the data is of shape (n_trajectories, n_time_steps, x, y, d1, d2), with d1, d2 in [0, 1]
#   ie, instead of 1 additional dimension for velocity: a (2,2) matrix where each component
#   (0,0),(1,0),(0,1),(1,1) can be plotted
# Size:
# - n_trajectories: 8 to 256
# - n_time_steps: 101
# - x: 128 to 512
# - y: 128 to 512
# - physical fields: 2 to 8 (density, pressure, energy, velocity…)
from functools import lru_cache

import gradio as gr
import h5py
import numpy as np
from fsspec import url_to_fs
from matplotlib import cm
from PIL import Image
import av
import io


repo_id = "lhoestq/turbulent_radiative_layer_tcool_demo"
set_path = f"hf://datasets/{repo_id}/**/*.hdf5"
fs, _ = url_to_fs(set_path)
paths = fs.glob(set_path)
files = {path: h5py.File(fs.open(path, "rb", cache_type="none"), "r") for path in paths}

def get_scalar_fields(path: str) -> list[str]:
    # TODO: support t1_fields (vector) and t2_fields (tensor)
    return list(files[path]["t0_fields"].keys())

def get_trajectories(path: str, field: str) -> list[int]:
    # The first dimension is the trajectory (8 to 256)
    return list(range(len(files[path]["t0_fields"][field])))

@lru_cache(maxsize=4)
def get_images(path: str, scalar_field: str, trajectory: int) -> list[Image.Image]:
    # The data is of shape (n_trajectories, n_time_steps, x, y)
    out = files[path]["t0_fields"][scalar_field][trajectory]
    out = np.log(out) # not sure why
    out = (out - out.min()) / (out.max() - out.min())
    out = np.uint8(cm.RdBu_r(out) * 255)
    return [Image.fromarray(img) for img in out]

fps = 25
# @lru_cache(maxsize=4)
def get_video(path: str, scalar_field: str, trajectory: int) -> str:
    video_filename = 'output_vid.webm'

    out = files[path]["t0_fields"][scalar_field][trajectory]
    out = np.log(out) # not sure why
    out = (out - out.min()) / (out.max() - out.min())
    out = np.uint8(cm.RdBu_r(out) * 255)
    
    output = av.open(video_filename, 'w')
    stream = output.add_stream('libvpx-vp9', str(fps))
    width, height = out[0].shape[1], out[0].shape[0]
    stream.width = width
    stream.height = height
    stream.pix_fmt = 'yuv444p' # or yuva420p
    # stream.options = {'crf': '17'}

    for img in out:
      image = Image.fromarray(img)
      frame = av.VideoFrame.from_image(image)
      packet = stream.encode(frame)
      output.mux(packet)

    # Flush the encoder and close the "in memory" file:
    packet = stream.encode(None)
    output.mux(packet)
    output.close()
    return video_filename
    
    # subprocess.run(["ffmpeg", "-y", "-framerate", "25", "-i", os.path.join(output_dir, "density_%d.png"), "-c:v", "libvpx-vp9", "-pix_fmt", "yuva420p", os.path.join(output_dir, "density.webm")])


default_scalar_fields = get_scalar_fields(paths[0])
default_trajectories = get_trajectories(paths[0], default_scalar_fields[0])
default_images = get_images(paths[0], default_scalar_fields[0], default_trajectories[0])
default_video = get_video(paths[0], default_scalar_fields[0], default_trajectories[0])

with gr.Blocks() as demo:
    gr.Markdown(f"# 💠 HDF5 Viewer for the [{repo_id}](https://huggingface.co/datasets/{repo_id}) Dataset 🌊")
    gr.Markdown(f"Showing files at `{set_path}`")
    with gr.Row():
        files_dropdown = gr.Dropdown(choices=paths, value=paths[0], label="File", scale=4)
        scalar_fields_dropdown = gr.Dropdown(choices=default_scalar_fields, value=default_scalar_fields[0], label="Physical field")
        trajectory_dropdown = gr.Dropdown(choices=default_trajectories, value=default_trajectories[0], label="Trajectory")
    gallery = gr.Gallery(default_images, preview=False, selected_index=len(default_images) // 2)
    gr.Markdown("_Tip: click on the image to go forward or backwards_")
    video = gr.Video(default_video)

    @files_dropdown.select(inputs=[files_dropdown], outputs=[scalar_fields_dropdown, trajectory_dropdown, gallery, video])
    def _update_file(path: str):
        scalar_fields = get_scalar_fields(path)
        trajectories = get_trajectories(path, scalar_fields[0])
        images = get_images(path, scalar_fields[0], trajectories[0])
        vid = get_video(path, scalar_fields[0], trajectories[0])
        yield {
            scalar_fields_dropdown: gr.Dropdown(choices=scalar_fields, value=scalar_fields[0]),
            trajectory_dropdown: gr.Dropdown(choices=trajectories, value=trajectories[0]),
            gallery: gr.Gallery(images),
            video: gr.Video(vid)
        }
        yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)}
    
    @scalar_fields_dropdown.select(inputs=[files_dropdown, scalar_fields_dropdown], outputs=[trajectory_dropdown, gallery, video])
    def _update_scalar_field(path: str, scalar_field: str):
        trajectories = get_trajectories(path, scalar_field)
        images = get_images(path, scalar_field, trajectories[0])
        vid = get_video(path, scalar_field, trajectories[0])
        yield {
            trajectory_dropdown: gr.Dropdown(choices=trajectories, value=trajectories[0]),
            gallery: gr.Gallery(images),
            video: gr.Video(vid)
        }
        yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)}

    @trajectory_dropdown.select(inputs=[files_dropdown, scalar_fields_dropdown, trajectory_dropdown], outputs=[gallery, video])
    def _update_trajectory(path: str, scalar_field: str, trajectory: int):
        images = get_images(path, scalar_field, trajectory)
        vid = get_video(path, scalar_field, trajectory)
        yield {gallery: gr.Gallery(images), video: gr.Video(vid)}
        yield {gallery: gr.Gallery(selected_index=len(default_images) // 2)}

demo.launch()