Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
import tensorflow as tf
|
7 |
+
|
8 |
+
# Function to load the model
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
model = tf.keras.models.load_model('path_to_your_saved_model.h5') # Provide the path to your model
|
12 |
+
return model
|
13 |
+
|
14 |
+
# Function to preprocess the image
|
15 |
+
def preprocess_image(image):
|
16 |
+
image = np.array(image.convert('RGB'))
|
17 |
+
image = cv2.resize(image, (224, 224)) # Resize the image to the input shape required by your model
|
18 |
+
image = image / 255.0 # Normalize the image
|
19 |
+
image = np.expand_dims(image, axis=0)
|
20 |
+
return image
|
21 |
+
|
22 |
+
# Function to predict the class
|
23 |
+
def predict(image, model):
|
24 |
+
processed_image = preprocess_image(image)
|
25 |
+
prediction = model.predict(processed_image)
|
26 |
+
return prediction
|
27 |
+
|
28 |
+
# Main app
|
29 |
+
def main():
|
30 |
+
st.title("Food Item Recognition and Estimation")
|
31 |
+
st.write("Upload an image of a food item and the model will recognize the food item and estimate its calories.")
|
32 |
+
|
33 |
+
model = load_model()
|
34 |
+
|
35 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
36 |
+
if uploaded_file is not None:
|
37 |
+
image = Image.open(uploaded_file)
|
38 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
39 |
+
|
40 |
+
st.write("")
|
41 |
+
st.write("Classifying...")
|
42 |
+
prediction = predict(image, model)
|
43 |
+
|
44 |
+
st.write(f"Predicted class: {np.argmax(prediction)}") # Update with your model's prediction logic
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
main()
|