Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,9 @@ import streamlit as st
|
|
3 |
import pickle
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from
|
7 |
from langchain.vectorstores import FAISS
|
8 |
-
from
|
9 |
-
from langchain.chains.question_answering import load_qa_chain
|
10 |
import os
|
11 |
|
12 |
# Load environment variables from .env file
|
@@ -52,12 +51,12 @@ def main():
|
|
52 |
if query:
|
53 |
docs = VectorStore.similarity_search(query=query, k=3)
|
54 |
|
55 |
-
# Use Hugging Face
|
56 |
model_name = "distilbert-base-uncased-distilled-squad" # Example model
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
st.write(
|
61 |
|
62 |
if __name__ == '__main__':
|
63 |
main()
|
|
|
3 |
import pickle
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
+
from transformers import pipeline
|
|
|
9 |
import os
|
10 |
|
11 |
# Load environment variables from .env file
|
|
|
51 |
if query:
|
52 |
docs = VectorStore.similarity_search(query=query, k=3)
|
53 |
|
54 |
+
# Use Hugging Face pipeline for question answering
|
55 |
model_name = "distilbert-base-uncased-distilled-squad" # Example model
|
56 |
+
qa_pipeline = pipeline("question-answering", model=model_name)
|
57 |
+
context = " ".join([doc.page_content for doc in docs])
|
58 |
+
result = qa_pipeline(question=query, context=context)
|
59 |
+
st.write(result['answer'])
|
60 |
|
61 |
if __name__ == '__main__':
|
62 |
main()
|