Spaces:
Sleeping
Sleeping
# from transformers import pipeline | |
# import gradio as gr | |
# from PIL import Image | |
# # Initialize the image classification pipeline with the specific model | |
# pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2") | |
# # Prediction function | |
# def predict(input_img): | |
# # Get the predictions from the pipeline | |
# predictions = pipe(input_img) | |
# result = {p["label"]: p["score"] for p in predictions} | |
# # Return the image and the top predictions as a string | |
# top_labels = [f"{label}: {score:.2f}" for label, score in result.items()] | |
# return input_img, "\n".join(top_labels) | |
# # Create the Gradio interface | |
# gradio_app = gr.Interface( | |
# fn=predict, | |
# inputs=gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"), | |
# outputs=[ | |
# gr.Image(label="Processed Image"), | |
# gr.Textbox(label="Result", placeholder="Top predictions here") | |
# ], | |
# title="Age Classification", | |
# description="Upload or capture an image to classify age using the SigLIP2 model." | |
# ) | |
# # Launch the app | |
# gradio_app.launch() | |
from transformers import pipeline | |
import gradio as gr | |
from PIL import Image | |
# Load the pretrained model pipeline | |
classifier = pipeline("image-classification", model="sherab65/age-classification") | |
# Prediction function | |
def predict(input_img): | |
predictions = classifier(input_img) | |
# Format predictions | |
result = {p["label"]: p["score"] for p in predictions} | |
top_labels = [f"{label}: {score:.2f}" for label, score in result.items()] | |
return input_img, "\n".join(top_labels) | |
# Create Gradio interface | |
gradio_app = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(label="Select Image", sources=["upload", "webcam"], type="pil"), | |
outputs=[ | |
gr.Image(label="Uploaded Image"), | |
gr.Textbox(label="Predicted Age Group(s)") | |
], | |
title="Age Classification using Hugging Face Model", | |
description="Upload or capture an image to classify the person's age group." | |
) | |
# Launch the app | |
gradio_app.launch() | |