Spaces:
Runtime error
Runtime error
""" | |
Reimplement evaluation.mat provided by Adobe in python | |
Output of `compute_gradient_loss` is sightly different from the MATLAB version provided by Adobe (less than 0.1%) | |
Output of `compute_connectivity_error` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm) | |
So do not report results calculated by these functions in your paper. | |
Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`. | |
by Yaoyi Li | |
""" | |
import scipy.ndimage | |
import numpy as np | |
from skimage.measure import label | |
import scipy.ndimage.morphology | |
def gauss(x, sigma): | |
y = np.exp(-x ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 * np.pi)) | |
return y | |
def dgauss(x, sigma): | |
y = -x * gauss(x, sigma) / (sigma ** 2) | |
return y | |
def gaussgradient(im, sigma): | |
epsilon = 1e-2 | |
halfsize = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))).astype(np.int32) | |
size = 2 * halfsize + 1 | |
hx = np.zeros((size, size)) | |
for i in range(0, size): | |
for j in range(0, size): | |
u = [i - halfsize, j - halfsize] | |
hx[i, j] = gauss(u[0], sigma) * dgauss(u[1], sigma) | |
hx = hx / np.sqrt(np.sum(np.abs(hx) * np.abs(hx))) | |
hy = hx.transpose() | |
gx = scipy.ndimage.convolve(im, hx, mode='nearest') | |
gy = scipy.ndimage.convolve(im, hy, mode='nearest') | |
return gx, gy | |
def compute_gradient_loss(pred, target, trimap): | |
pred = pred / 255.0 | |
target = target / 255.0 | |
pred_x, pred_y = gaussgradient(pred, 1.4) | |
target_x, target_y = gaussgradient(target, 1.4) | |
pred_amp = np.sqrt(pred_x ** 2 + pred_y ** 2) | |
target_amp = np.sqrt(target_x ** 2 + target_y ** 2) | |
error_map = (pred_amp - target_amp) ** 2 | |
loss = np.sum(error_map[trimap == 128]) | |
return loss / 1000. | |
def getLargestCC(segmentation): | |
labels = label(segmentation, connectivity=1) | |
largestCC = labels == np.argmax(np.bincount(labels.flat)) | |
return largestCC | |
def compute_connectivity_error(pred, target, trimap, step=0.1): | |
pred = pred / 255.0 | |
target = target / 255.0 | |
h, w = pred.shape | |
thresh_steps = list(np.arange(0, 1 + step, step)) | |
l_map = np.ones_like(pred, dtype=np.float) * -1 | |
for i in range(1, len(thresh_steps)): | |
pred_alpha_thresh = (pred >= thresh_steps[i]).astype(np.int) | |
target_alpha_thresh = (target >= thresh_steps[i]).astype(np.int) | |
omega = getLargestCC(pred_alpha_thresh * target_alpha_thresh).astype(np.int) | |
flag = ((l_map == -1) & (omega == 0)).astype(np.int) | |
l_map[flag == 1] = thresh_steps[i - 1] | |
l_map[l_map == -1] = 1 | |
pred_d = pred - l_map | |
target_d = target - l_map | |
pred_phi = 1 - pred_d * (pred_d >= 0.15).astype(np.int) | |
target_phi = 1 - target_d * (target_d >= 0.15).astype(np.int) | |
loss = np.sum(np.abs(pred_phi - target_phi)[trimap == 128]) | |
return loss / 1000. | |
def compute_mse_loss(pred, target, trimap): | |
error_map = (pred - target) / 255.0 | |
loss = np.sum((error_map ** 2) * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8) | |
return loss | |
def compute_sad_loss(pred, target, trimap): | |
error_map = np.abs((pred - target) / 255.0) | |
loss = np.sum(error_map * (trimap == 128)) | |
return loss / 1000, np.sum(trimap == 128) / 1000 | |
def compute_mad_loss(pred, target, trimap): | |
error_map = np.abs((pred - target) / 255.0) | |
loss = np.sum(error_map * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8) | |
return loss | |