import argparse import datetime import json import os import time import gradio as gr import hashlib from vcoder_llava.vcoder_conversation import (default_conversation, conv_templates, SeparatorStyle) from vcoder_llava.constants import LOGDIR from vcoder_llava.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg) from chat import Chat logger = build_logger("gradio_app", "gradio_web_server.log") headers = {"User-Agent": "VCoder Client"} no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) priority = { "vicuna-13b": "aaaaaaa", "koala-13b": "aaaaaab", } def get_conv_log_filename(): t = datetime.datetime.now() name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") return name get_window_url_params = """ function() { const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); console.log(url_params); return url_params; } """ def load_demo_refresh_model_list(request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}") state = default_conversation.copy() return state def vote_last_response(state, vote_type, model_selector, request: gr.Request): with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "model": model_selector, "state": state.dict(), } fout.write(json.dumps(data) + "\n") def upvote_last_response(state, model_selector, request: gr.Request): vote_last_response(state, "upvote", model_selector, request) return ("",) + (disable_btn,) * 3 def downvote_last_response(state, model_selector, request: gr.Request): vote_last_response(state, "downvote", model_selector, request) return ("",) + (disable_btn,) * 3 def flag_last_response(state, model_selector, request: gr.Request): vote_last_response(state, "flag", model_selector, request) return ("",) + (disable_btn,) * 3 def regenerate(state, image_process_mode, seg_process_mode, depth_process_mode): state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, prev_human_msg[1][3], seg_process_mode, prev_human_msg[1][5], depth_process_mode) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None, None, None) + (disable_btn,) * 5 def clear_history(request: gr.Request): state = default_conversation.copy() return (state, state.to_gradio_chatbot(), "", None, None, None) + (disable_btn,) * 5 def add_text(state, text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode, request: gr.Request): logger.info(f"add_text. len: {len(text)}") if len(text) <= 0 and image is None: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None, None, None) + (no_change_btn,) * 5 if args.moderate: flagged = violates_moderation(text) if flagged: state.skip_next = True return (state, state.to_gradio_chatbot(), moderation_msg, None, None, None) + ( no_change_btn,) * 5 text = text[:1200] # Hard cut-off if image is not None: text = text[:864] # Hard cut-off for images if '' not in text: text = '\n' + text if seg is not None: if '' not in text: text = '\n' + text if depth is not None: if '' not in text: text = '\n' + text text = (text, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode) if len(state.get_images(return_pil=True)) > 0: state = default_conversation.copy() state.append_message(state.roles[0], text) state.append_message(state.roles[1], None) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None, None, None) + (disable_btn,) * 5 def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): start_tstamp = time.time() model_name = model_selector if state.skip_next: # This generate call is skipped due to invalid inputs yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return if len(state.messages) == state.offset + 2: # First round of conversation if "llava" in model_name.lower(): template_name = "llava_v1" new_state = conv_templates[template_name].copy() new_state.append_message(new_state.roles[0], state.messages[-2][1]) new_state.append_message(new_state.roles[1], None) state = new_state # Construct prompt prompt = state.get_prompt() # Make requests pload = { "model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p), "max_new_tokens": min(int(max_new_tokens), 1536), "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, "images": f'List of {len(state.get_images())}', "segs": f'List of {len(state.get_segs())}', "depths": f'List of {len(state.get_depths())}', } logger.info(f"==== request ====\n{pload}") pload['images'] = state.get_images() pload['segs'] = state.get_segs() pload['depths'] = state.get_depths() state.messages[-1][-1] = "▌" yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 try: # Stream output response = chat.generate_stream_gate(pload) for chunk in response: if chunk: data = json.loads(chunk.decode()) if data["error_code"] == 0: output = data["text"][len(prompt):].strip() state.messages[-1][-1] = output + "▌" yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 else: output = data["text"] + f" (error_code: {data['error_code']})" state.messages[-1][-1] = output yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) return time.sleep(0.03) except Exception: gr.Warning(server_error_msg) state.messages[-1][-1] = server_error_msg yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) return state.messages[-1][-1] = state.messages[-1][-1][:-1] yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 logger.info(f"{output}") title = "

VCoder: Versatile Vision Encoders for Multimodal Large Language Models

" # style=' description = "

Jitesh Jain, Jianwei Yang, Humphrey Shi

" \ + "

Project Page | Video | ArXiv Paper | Github Repo

" \ + "

[Note: You can obtain segmentation maps for your image using the OneFormer Demo and the depth map from DINOv2. Please click on Regenerate button if you are unsatisfied with the generated response. You may find screenshots of our demo trials here.]

" tos_markdown = (""" ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. """) block_css = """ #buttons button { min-width: min(120px,100%); } """ def build_demo(embed_mode): textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) with gr.Blocks(title="VCoder", theme=gr.themes.Default(), css=block_css) as demo: state = gr.State() if not embed_mode: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=4): with gr.Row(elem_id="model_selector_row"): model_selector = gr.Dropdown( choices=[model + "-4bit" for model in models], value=models[0]+"-4bit" if len(models) > 0 else "", interactive=True, show_label=False, container=False) # with gr.Row(): imagebox = gr.Image(type="pil", label="Image Input") image_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square image", visible=False) with gr.Row(): segbox = gr.Image(type="pil", label="Seg Map") seg_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square Seg Map", visible=False) depthbox = gr.Image(type="pil", label="Depth Map") depth_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square Depth Map", visible=False) with gr.Accordion("Parameters", open=False) as parameter_row: temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature",) top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.1, interactive=True, label="Top P",) max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) with gr.Column(scale=8): chatbot = gr.Chatbot(elem_id="chatbot", label="VCoder Chatbot", height=550) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=50): submit_btn = gr.Button(value="Send", variant="primary") with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) flag_btn = gr.Button(value="⚠ī¸ Flag", interactive=False) #stop_btn = gr.Button(value="⏚ī¸ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑ī¸ Clear", interactive=False) cur_dir = os.path.dirname(os.path.abspath(__file__)) gr.Examples(examples=[ [f"{cur_dir}/examples/people.jpg", f"{cur_dir}/examples/people_pan.png", None, "What objects can be seen in the image?", "0.9", "1.0"], [f"{cur_dir}/examples/corgi.jpg", f"{cur_dir}/examples/corgi_pan.png", None, "What objects can be seen in the image?", "0.6", "0.7"], [f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_pan.png", f"{cur_dir}/examples/suits_depth.jpeg", "Can you describe the depth order of the objects in this image, from closest to farthest?", "0.2", "0.5"], [f"{cur_dir}/examples/depth.jpeg", f"{cur_dir}/examples/depth_pan.png", f"{cur_dir}/examples/depth_depth.png", "Can you describe the depth order of the objects in this image, from closest to farthest?", "0.2", "0.5"], [f"{cur_dir}/examples/friends.jpg", f"{cur_dir}/examples/friends_pan.png", None, "What is happening in the image?", "0.8", "0.9"], [f"{cur_dir}/examples/suits.jpg", f"{cur_dir}/examples/suits_pan.png", None, "What objects can be seen in the image?", "0.5", "0.5"], ], inputs=[imagebox, segbox, depthbox, textbox, temperature, top_p]) if not embed_mode: gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] upvote_btn.click(upvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) downvote_btn.click(downvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) flag_btn.click(flag_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) regenerate_btn.click(regenerate, [state, image_process_mode, seg_process_mode, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list).then( http_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list) clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list) textbox.submit(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode, depthbox, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list) submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode, segbox, seg_process_mode, depthbox, depth_process_mode], [state, chatbot, textbox, imagebox, segbox, depthbox] + btn_list ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list) demo.load(load_demo_refresh_model_list, None, [state]) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="shi-labs/vcoder_ds_llava-v1.5-13b") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--model-name", type=str) parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--share", action="store_true") parser.add_argument("--moderate", action="store_true") parser.add_argument("--embed", action="store_true") parser.add_argument("--concurrency-count", type=int, default=10) parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) args = parser.parse_args() logger.info(f"args: {args}") if args.model_name is None: model_paths = args.model_path.split("/") if model_paths[-1].startswith('checkpoint-'): model_name = model_paths[-2] + "_" + model_paths[-1] else: model_name = model_paths[-1] else: model_name = args.model_name models = [model_name] args.load_4bit = True chat = Chat( args.model_path, args.model_base, args.model_name, args.load_8bit, args.load_4bit, args.device, logger ) logger.info(args) demo = build_demo(args.embed) demo.queue().launch( server_name=args.host, server_port=args.port, share=args.share )