shivambhosale commited on
Commit
9ec63d3
·
verified ·
1 Parent(s): 96757f4

Upload folder using huggingface_hub

Browse files
1_lab1.ipynb ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
42
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
43
+ " </span>\n",
44
+ " </td>\n",
45
+ " </tr>\n",
46
+ "</table>"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "markdown",
51
+ "metadata": {},
52
+ "source": [
53
+ "### And please do remember to contact me if I can help\n",
54
+ "\n",
55
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
56
+ "\n",
57
+ "\n",
58
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
59
+ "\n",
60
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
61
+ "- Open extensions (View >> extensions)\n",
62
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
63
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
64
+ "Then View >> Explorer to bring back the File Explorer.\n",
65
+ "\n",
66
+ "And then:\n",
67
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
68
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
69
+ "3. Enjoy!\n",
70
+ "\n",
71
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
72
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
73
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
74
+ "2. In the Settings search bar, type \"venv\" \n",
75
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
76
+ "And then try again.\n",
77
+ "\n",
78
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
79
+ "`conda deactivate` \n",
80
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
81
+ "`conda config --set auto_activate_base false` \n",
82
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": 1,
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "# First let's do an import\n",
92
+ "from dotenv import load_dotenv\n"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": 2,
98
+ "metadata": {},
99
+ "outputs": [
100
+ {
101
+ "data": {
102
+ "text/plain": [
103
+ "True"
104
+ ]
105
+ },
106
+ "execution_count": 2,
107
+ "metadata": {},
108
+ "output_type": "execute_result"
109
+ }
110
+ ],
111
+ "source": [
112
+ "# Next it's time to load the API keys into environment variables\n",
113
+ "\n",
114
+ "load_dotenv(override=True)"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 3,
120
+ "metadata": {},
121
+ "outputs": [
122
+ {
123
+ "name": "stdout",
124
+ "output_type": "stream",
125
+ "text": [
126
+ "OpenAI API Key exists and begins sk-proj-\n"
127
+ ]
128
+ }
129
+ ],
130
+ "source": [
131
+ "# Check the keys\n",
132
+ "\n",
133
+ "import os\n",
134
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
135
+ "\n",
136
+ "if openai_api_key:\n",
137
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
138
+ "else:\n",
139
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
140
+ " \n"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": 4,
146
+ "metadata": {},
147
+ "outputs": [],
148
+ "source": [
149
+ "# And now - the all important import statement\n",
150
+ "# If you get an import error - head over to troubleshooting guide\n",
151
+ "\n",
152
+ "from openai import OpenAI"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": 5,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "# And now we'll create an instance of the OpenAI class\n",
162
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
163
+ "# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
164
+ "\n",
165
+ "openai = OpenAI()"
166
+ ]
167
+ },
168
+ {
169
+ "cell_type": "code",
170
+ "execution_count": 6,
171
+ "metadata": {},
172
+ "outputs": [],
173
+ "source": [
174
+ "# Create a list of messages in the familiar OpenAI format\n",
175
+ "\n",
176
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": 7,
182
+ "metadata": {},
183
+ "outputs": [
184
+ {
185
+ "name": "stdout",
186
+ "output_type": "stream",
187
+ "text": [
188
+ "2 + 2 equals 4.\n"
189
+ ]
190
+ }
191
+ ],
192
+ "source": [
193
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
194
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
195
+ "\n",
196
+ "response = openai.chat.completions.create(\n",
197
+ " model=\"gpt-3.5-turbo\",\n",
198
+ " messages=messages\n",
199
+ ")\n",
200
+ "\n",
201
+ "print(response.choices[0].message.content)\n"
202
+ ]
203
+ },
204
+ {
205
+ "cell_type": "code",
206
+ "execution_count": 8,
207
+ "metadata": {},
208
+ "outputs": [],
209
+ "source": [
210
+ "# And now - let's ask for a question:\n",
211
+ "\n",
212
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
213
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": 9,
219
+ "metadata": {},
220
+ "outputs": [
221
+ {
222
+ "name": "stdout",
223
+ "output_type": "stream",
224
+ "text": [
225
+ "If 5 machines take 5 minutes to make 5 widgets, how long would 100 machines take to make 100 widgets?\n"
226
+ ]
227
+ }
228
+ ],
229
+ "source": [
230
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
231
+ "\n",
232
+ "response = openai.chat.completions.create(\n",
233
+ " model=\"gpt-4.1-mini\",\n",
234
+ " messages=messages\n",
235
+ ")\n",
236
+ "\n",
237
+ "question = response.choices[0].message.content\n",
238
+ "\n",
239
+ "print(question)\n"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": 10,
245
+ "metadata": {},
246
+ "outputs": [],
247
+ "source": [
248
+ "# form a new messages list\n",
249
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "execution_count": 11,
255
+ "metadata": {},
256
+ "outputs": [
257
+ {
258
+ "name": "stdout",
259
+ "output_type": "stream",
260
+ "text": [
261
+ "Let's analyze the problem step-by-step:\n",
262
+ "\n",
263
+ "- Given: 5 machines take 5 minutes to make 5 widgets.\n",
264
+ "- Question: How long would 100 machines take to make 100 widgets?\n",
265
+ "\n",
266
+ "**Step 1: Find the rate per machine**\n",
267
+ "\n",
268
+ "If 5 machines take 5 minutes to make 5 widgets, then:\n",
269
+ "\n",
270
+ "- In 5 minutes, 5 machines make 5 widgets.\n",
271
+ "- So, in 5 minutes, 1 machine makes \\( \\frac{5}{5} = 1 \\) widget.\n",
272
+ "- Therefore, 1 machine makes 1 widget in 5 minutes.\n",
273
+ "\n",
274
+ "**Step 2: Determine how long it takes for 1 machine to make 1 widget**\n",
275
+ "\n",
276
+ "From above, 1 machine takes 5 minutes to make 1 widget.\n",
277
+ "\n",
278
+ "**Step 3: Calculate how long 100 machines take to make 100 widgets**\n",
279
+ "\n",
280
+ "- Since 1 machine makes 1 widget in 5 minutes, 100 machines can work in parallel.\n",
281
+ "- So, 100 machines can make 100 widgets in the same 5 minutes.\n",
282
+ "\n",
283
+ "**Answer: 5 minutes**\n"
284
+ ]
285
+ }
286
+ ],
287
+ "source": [
288
+ "# Ask it again\n",
289
+ "\n",
290
+ "response = openai.chat.completions.create(\n",
291
+ " model=\"gpt-4.1-mini\",\n",
292
+ " messages=messages\n",
293
+ ")\n",
294
+ "\n",
295
+ "answer = response.choices[0].message.content\n",
296
+ "print(answer)\n"
297
+ ]
298
+ },
299
+ {
300
+ "cell_type": "code",
301
+ "execution_count": 12,
302
+ "metadata": {},
303
+ "outputs": [
304
+ {
305
+ "data": {
306
+ "text/markdown": [
307
+ "Let's analyze the problem step-by-step:\n",
308
+ "\n",
309
+ "- Given: 5 machines take 5 minutes to make 5 widgets.\n",
310
+ "- Question: How long would 100 machines take to make 100 widgets?\n",
311
+ "\n",
312
+ "**Step 1: Find the rate per machine**\n",
313
+ "\n",
314
+ "If 5 machines take 5 minutes to make 5 widgets, then:\n",
315
+ "\n",
316
+ "- In 5 minutes, 5 machines make 5 widgets.\n",
317
+ "- So, in 5 minutes, 1 machine makes \\( \\frac{5}{5} = 1 \\) widget.\n",
318
+ "- Therefore, 1 machine makes 1 widget in 5 minutes.\n",
319
+ "\n",
320
+ "**Step 2: Determine how long it takes for 1 machine to make 1 widget**\n",
321
+ "\n",
322
+ "From above, 1 machine takes 5 minutes to make 1 widget.\n",
323
+ "\n",
324
+ "**Step 3: Calculate how long 100 machines take to make 100 widgets**\n",
325
+ "\n",
326
+ "- Since 1 machine makes 1 widget in 5 minutes, 100 machines can work in parallel.\n",
327
+ "- So, 100 machines can make 100 widgets in the same 5 minutes.\n",
328
+ "\n",
329
+ "**Answer: 5 minutes**"
330
+ ],
331
+ "text/plain": [
332
+ "<IPython.core.display.Markdown object>"
333
+ ]
334
+ },
335
+ "metadata": {},
336
+ "output_type": "display_data"
337
+ }
338
+ ],
339
+ "source": [
340
+ "from IPython.display import Markdown, display\n",
341
+ "\n",
342
+ "display(Markdown(answer))\n",
343
+ "\n"
344
+ ]
345
+ },
346
+ {
347
+ "cell_type": "markdown",
348
+ "metadata": {},
349
+ "source": [
350
+ "# Congratulations!\n",
351
+ "\n",
352
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
353
+ "\n",
354
+ "Next time things get more interesting..."
355
+ ]
356
+ },
357
+ {
358
+ "cell_type": "markdown",
359
+ "metadata": {},
360
+ "source": [
361
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
362
+ " <tr>\n",
363
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
364
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
365
+ " </td>\n",
366
+ " <td>\n",
367
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
368
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
369
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
370
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
371
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
372
+ " </span>\n",
373
+ " </td>\n",
374
+ " </tr>\n",
375
+ "</table>"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "code",
380
+ "execution_count": 15,
381
+ "metadata": {},
382
+ "outputs": [
383
+ {
384
+ "data": {
385
+ "text/markdown": [
386
+ "Healthcare diagnostics"
387
+ ],
388
+ "text/plain": [
389
+ "<IPython.core.display.Markdown object>"
390
+ ]
391
+ },
392
+ "metadata": {},
393
+ "output_type": "display_data"
394
+ }
395
+ ],
396
+ "source": [
397
+ "# First create the messages:\n",
398
+ "\n",
399
+ "messages = [{\"role\": \"user\", \"content\": \"Pickup a business area that might be worh exploring for an Agentic AI opportunity. Only return the business area, nothing else.\"}]\n",
400
+ "\n",
401
+ "# Then make the first call:\n",
402
+ "\n",
403
+ "response = openai.chat.completions.create(\n",
404
+ " model=\"gpt-4.1-mini\",\n",
405
+ " messages=messages\n",
406
+ ")\n",
407
+ "\n",
408
+ "# Then read the business area:\n",
409
+ "\n",
410
+ "business_area = response.choices[0].message.content\n",
411
+ "\n",
412
+ "display(Markdown(business_area))\n",
413
+ "\n",
414
+ "# And repeat!\n"
415
+ ]
416
+ },
417
+ {
418
+ "cell_type": "code",
419
+ "execution_count": 17,
420
+ "metadata": {},
421
+ "outputs": [
422
+ {
423
+ "data": {
424
+ "text/markdown": [
425
+ "Fragmented and siloed patient data leading to delayed and inaccurate diagnoses."
426
+ ],
427
+ "text/plain": [
428
+ "<IPython.core.display.Markdown object>"
429
+ ]
430
+ },
431
+ "metadata": {},
432
+ "output_type": "display_data"
433
+ }
434
+ ],
435
+ "source": [
436
+ "# Second create the messages:\n",
437
+ "\n",
438
+ "messages = [{\"role\": \"user\", \"content\": f\"Now, in {business_area} industry, what is a pain-point that might be ripe for an Agentic solution? Only return the pain-point, nothing else.\"}]\n",
439
+ "\n",
440
+ "# Then make the first call:\n",
441
+ "\n",
442
+ "response = openai.chat.completions.create(\n",
443
+ " model=\"gpt-4.1-mini\",\n",
444
+ " messages=messages\n",
445
+ ")\n",
446
+ "\n",
447
+ "# Then read the business painpoint:\n",
448
+ "\n",
449
+ "business_painpoint = response.choices[0].message.content\n",
450
+ "\n",
451
+ "display(Markdown(business_painpoint))\n",
452
+ "\n",
453
+ "# And repeat!\n"
454
+ ]
455
+ },
456
+ {
457
+ "cell_type": "code",
458
+ "execution_count": 18,
459
+ "metadata": {},
460
+ "outputs": [
461
+ {
462
+ "data": {
463
+ "text/markdown": [
464
+ "An Agentic AI solution could be an intelligent, autonomous data integration agent that continuously gathers, harmonizes, and analyzes patient data from disparate sources—electronic health records, lab results, imaging, wearable devices—in real-time. This agent prioritizes and synthesizes the most relevant information into a unified, dynamic patient profile, automatically identifying potential diagnostic patterns and flagging inconsistencies or gaps. It then proactively generates diagnostic hypotheses and recommends next steps or tests, collaborating with healthcare providers to reduce delays and improve diagnostic accuracy while ensuring data privacy and compliance."
465
+ ],
466
+ "text/plain": [
467
+ "<IPython.core.display.Markdown object>"
468
+ ]
469
+ },
470
+ "metadata": {},
471
+ "output_type": "display_data"
472
+ }
473
+ ],
474
+ "source": [
475
+ "# Third create the messages:\n",
476
+ "\n",
477
+ "messages = [{\"role\": \"user\", \"content\": f\"Now, in {business_area} industry, {business_painpoint} is a pain-point that might be ripe for an Agentic solution. Please propose the Agentic AI solution. Only return the solution, nothing else.\"}]\n",
478
+ "\n",
479
+ "# Then make the first call:\n",
480
+ "\n",
481
+ "response = openai.chat.completions.create(\n",
482
+ " model=\"gpt-4.1-mini\",\n",
483
+ " messages=messages\n",
484
+ ")\n",
485
+ "\n",
486
+ "# Then read the bsolution:\n",
487
+ "\n",
488
+ "business_solution = response.choices[0].message.content\n",
489
+ "\n",
490
+ "display(Markdown(business_solution))\n",
491
+ "\n",
492
+ "# And repeat!\n"
493
+ ]
494
+ },
495
+ {
496
+ "cell_type": "markdown",
497
+ "metadata": {},
498
+ "source": []
499
+ }
500
+ ],
501
+ "metadata": {
502
+ "kernelspec": {
503
+ "display_name": ".venv",
504
+ "language": "python",
505
+ "name": "python3"
506
+ },
507
+ "language_info": {
508
+ "codemirror_mode": {
509
+ "name": "ipython",
510
+ "version": 3
511
+ },
512
+ "file_extension": ".py",
513
+ "mimetype": "text/x-python",
514
+ "name": "python",
515
+ "nbconvert_exporter": "python",
516
+ "pygments_lexer": "ipython3",
517
+ "version": "3.12.7"
518
+ }
519
+ },
520
+ "nbformat": 4,
521
+ "nbformat_minor": 2
522
+ }
2_lab2.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
3_lab3.ipynb ADDED
@@ -0,0 +1,640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to Lab 3 for Week 1 Day 4\n",
8
+ "\n",
9
+ "Today we're going to build something with immediate value!\n",
10
+ "\n",
11
+ "In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
12
+ "\n",
13
+ "Please replace it with yours!\n",
14
+ "\n",
15
+ "I've also made a file called `summary.txt`\n",
16
+ "\n",
17
+ "We're not going to use Tools just yet - we're going to add the tool tomorrow."
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "markdown",
22
+ "metadata": {},
23
+ "source": [
24
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
25
+ " <tr>\n",
26
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
27
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
28
+ " </td>\n",
29
+ " <td>\n",
30
+ " <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
31
+ " <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
32
+ " and we're also going to use the popular PyPDF2 PDF reader. You can get guides to these packages by asking \n",
33
+ " ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
34
+ " </span>\n",
35
+ " </td>\n",
36
+ " </tr>\n",
37
+ "</table>"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": 1,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
47
+ "\n",
48
+ "from dotenv import load_dotenv\n",
49
+ "from openai import OpenAI\n",
50
+ "from pypdf import PdfReader\n",
51
+ "import gradio as gr"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": 2,
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "load_dotenv(override=True)\n",
61
+ "openai = OpenAI()"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 3,
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "reader = PdfReader(\"me/linkedin.pdf\")\n",
71
+ "linkedin = \"\"\n",
72
+ "for page in reader.pages:\n",
73
+ " text = page.extract_text()\n",
74
+ " if text:\n",
75
+ " linkedin += text"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 4,
81
+ "metadata": {},
82
+ "outputs": [
83
+ {
84
+ "name": "stdout",
85
+ "output_type": "stream",
86
+ "text": [
87
+ "   \n",
88
+ "Contact\n",
89
+ "Shivam Nivas, \n",
90
+ "Sr. No. 36/1,\n",
91
+ "Yashwantnagar,\n",
92
+ "Kharadi,\n",
93
+ "Pune - 411014,\n",
94
+ "Maharashtra,\n",
95
+ "India.\n",
96
+ "9890359987 (Work)\n",
97
98
+ "www.linkedin.com/in/\n",
99
+ "bhosaleshivam (LinkedIn)\n",
100
+ "Top Skills\n",
101
+ "TensorFlow\n",
102
+ "Keras\n",
103
+ "Convolutional Neural Networks\n",
104
+ "(CNN)\n",
105
+ "Certifications\n",
106
+ "Statistics with Python\n",
107
+ "Applied Machine Learning in Python\n",
108
+ "Machine Learning\n",
109
+ "Neural Networks and Deep Learning\n",
110
+ "Convolutional Neural Networks\n",
111
+ "Publications\n",
112
+ "Road segmentation: exploiting the\n",
113
+ "efficiency of skip connections for\n",
114
+ "efficient semantic segmentation\n",
115
+ "R2D2: Reducing Redundancy and\n",
116
+ "Duplication in Data Lakes\n",
117
+ "Patents\n",
118
+ "Relating Data in Data Lakes\n",
119
+ "Shivam Bhosale\n",
120
+ "Ex-Software Engineer @Adobe | AI Researcher | LLMs & NLP\n",
121
+ "| Python & PyTorch | Full-Stack Development | Master’s in Data\n",
122
+ "Science @ USC | IIT Kharagpur\n",
123
+ "Los Angeles, California, United States\n",
124
+ "Summary\n",
125
+ "Hi, I’m a technologist and AI enthusiast, currently pursuing an M.S.\n",
126
+ "in Applied Data Science at the University of Southern California. I\n",
127
+ "bring a strong foundation in software development and AI research,\n",
128
+ "with prior experience as a Member of Technical Staff at Adobe and a\n",
129
+ "B.Tech (Hons.) degree from IIT Kharagpur in Electrical Engineering\n",
130
+ "with a minor in Computer Science.\n",
131
+ "I’m passionate about building products at the intersection of AI and\n",
132
+ "software, delivering intuitive solutions that solve real problems.\n",
133
+ "I enjoy working across the stack: from training deep models\n",
134
+ "to deploying scalable systems with Python, C++, React, and\n",
135
+ "TypeScript.\n",
136
+ "✅ At Adobe, I worked on key feature releases for Adobe Captivate\n",
137
+ "(4 M+ users), integrating AI-driven functionalities like the AI Text to\n",
138
+ "Avatar feature, which was showcased at Adobe Learning Summit\n",
139
+ "2024 in Las Vegas.\n",
140
+ "✅ As a Research Intern at Adobe, I built the R2D2 model to reduce\n",
141
+ "storage redundancy, which led to a US patent and a publication at\n",
142
+ "ACM SIGMOD/PACMMOD 2024.\n",
143
+ "✅ For my thesis, I engineered a deep learning pipeline to extract\n",
144
+ "road networks from satellite images, culminating in a research paper\n",
145
+ "published in the Journal of South Asian Logistics and Transport.\n",
146
+ "✅ I also collaborated with researchers in London on Computer Vision\n",
147
+ "for defect detection, achieving 96.92% accuracy using deep CNN\n",
148
+ "architectures.\n",
149
+ "Beyond the technical, I was the General Secretary for Students’\n",
150
+ "Welfare, serving 18K+ students at IIT Kharagpur. Always up for\n",
151
+ "meaningful conversations about AI, research, or tech innovation.\n",
152
+ "Let’s connect!\n",
153
+ "  Page 1 of 5   \n",
154
+ "Experience\n",
155
+ "Adobe\n",
156
+ "Member of Technical Staff\n",
157
+ "June 2023 - November 2024 (1 year 6 months)\n",
158
+ "Bengaluru, Karnataka, India\n",
159
+ "I worked on two major Adobe products\n",
160
+ "1. Adobe Captivate (desktop application) - I contributed to the front end\n",
161
+ "(TypeScript, React) and the back end (C++). Spot award nominee for\n",
162
+ "contribution in \"AI Avatar in Captivate,\" which made it to the Adobe eLearning\n",
163
+ "Summit 2024 in Las Vegas, Text to Avatar.\n",
164
+ "2. Adobe eLearning Community Portal (website) - I contributed to maintaining\n",
165
+ "and developing the website (JavaScript, PHP, WordPress) and gained\n",
166
+ "proficiency in AWS, Splunk, and CICD pipelines. Integrated the AEM,\n",
167
+ "upgraded the WordPress version, and resolved PSIRT and vulnerability\n",
168
+ "issues.\n",
169
+ "Research\n",
170
+ "1. LLMs in generating eLearning courses.\n",
171
+ "2. Question generation through NLP.\n",
172
+ "3. Cursor removal from screen recording video using Computer vision.\n",
173
+ "Indian Institute of Technology, Kharagpur\n",
174
+ "Student Researcher (Bachelor’s Thesis)\n",
175
+ "May 2022 - May 2023 (1 year 1 month)\n",
176
+ "Kharagpur, West Bengal, India\n",
177
+ "- Engineered end-to-end framework to extract road features from satellite\n",
178
+ "images using CNN-based models. [https://github.com/bhosaleshivam/\n",
179
+ "topology-enhanced]\n",
180
+ "- Evaluated and compared state-of-the-art models (U-Net, DeepLabV3+,\n",
181
+ "Topology-Enhanced) on the SpaceNet3 dataset.\n",
182
+ "- Improved road detection accuracy by 7.5% by proposing a new model\n",
183
+ "architecture, especially in shadowed regions.\n",
184
+ "Institute Wellness Group IIT Kharagpur\n",
185
+ "2 years 1 month\n",
186
+ "Executive Head\n",
187
+ "June 2021 - August 2022 (1 year 3 months)\n",
188
+ "Kharagpur, West Bengal, India\n",
189
+ "Core Team Member\n",
190
+ "  Page 2 of 5   \n",
191
+ "August 2020 - June 2021 (11 months)\n",
192
+ "Kharagpur, West Bengal, India\n",
193
+ "Adobe\n",
194
+ "Research Intern (Pre-Placement Offer Received)\n",
195
+ "May 2022 - July 2022 (3 months)\n",
196
+ "Kharagpur Data Analytics Group\n",
197
+ "1 year 9 months\n",
198
+ "Executive Head\n",
199
+ "June 2021 - June 2022 (1 year 1 month)\n",
200
+ "Kharagpur, West Bengal, India\n",
201
+ "Student Member\n",
202
+ "October 2020 - June 2021 (9 months)\n",
203
+ "Student Welfare Group, IIT Kharagpur\n",
204
+ "Executive Head\n",
205
+ "August 2021 - May 2022 (10 months)\n",
206
+ "Technology Students' Gymkhana, IIT Kharagpur\n",
207
+ "General Secretary Students' Welfare\n",
208
+ "August 2021 - April 2022 (9 months)\n",
209
+ "Kharagpur, West Bengal, India\n",
210
+ "London South Bank University\n",
211
+ "Research Intern\n",
212
+ "May 2021 - June 2021 (2 months)\n",
213
+ "Project Title: “Semi-Automated Defect Inspection in Castings using Deep\n",
214
+ "Convolutional Neural Networks”\n",
215
+ "Guide: Prof. Bugra Alkan\n",
216
+ "• Objective: Detection and segmentation of casting defects with deep CNNs. \n",
217
+ "• Metrics: Accuracy (Classification), mAP (Object Detection).\n",
218
+ "• Achieved 96.92% accuracy in the classification task with an 11-layer CNN\n",
219
+ "network consisting of Convolutional, Pooling and FC layers.\n",
220
+ "• Annotated defects with CVAT and Roboflow tools. Implemented various pre-\n",
221
+ "trained models of EfficientDet family with the TensorFlow API.\n",
222
+ "Indian Institute of Technology, Kharagpur\n",
223
+ "Computer Vision Intern\n",
224
+ "March 2021 - May 2021 (3 months)\n",
225
+ "  Page 3 of 5   \n",
226
+ "Project Title: Automated Classification of Ulcerative Colitis Severity from\n",
227
+ "Endoscopic Images\n",
228
+ "Guide: Prof. Debdoot Sheet\n",
229
+ "• Objective: Development of neural network models for the classification of the\n",
230
+ "captured endoscopic images based on anatomical locations.\n",
231
+ "• Metrics: Accuracy, F1Score. \n",
232
+ "• Explored image enhancement techniques like the NBI, FICE, i-Scan used in\n",
233
+ "the endoscopy (dye-less chromoendoscopy).\n",
234
+ "• Concluded 0.82 F1Score on the Kvasir Dataset after fine-tuning the various\n",
235
+ "versions of VGGNet, EfficientNet, XceptionNet, and ResNet.\n",
236
+ "English Technology Dramatics Society: Encore\n",
237
+ "Member\n",
238
+ "August 2019 - May 2021 (1 year 10 months)\n",
239
+ "Kharagpur, West Bengal\n",
240
+ "Jalla Labs Private Limited\n",
241
+ "AI Intern\n",
242
+ "December 2020 - February 2021 (3 months)\n",
243
+ "• Extracted useful structured data and texts using OCR/Non-OCR techniques\n",
244
+ "from different resumes provided in various file formats.\n",
245
+ "• Built a User-Query-based resume ranking system, where the resumes were\n",
246
+ "ranked given keywords, using Spacy and RegEx libraries.\n",
247
+ "• Deployed specific profile relevant extraction of information using NER\n",
248
+ "(Named Entity Recognition) method using the NLTK Python library.\n",
249
+ "• Stationed a web scrapper using Beautiful Soup that extracted user\n",
250
+ "information from LinkedIn and profile information from the Wikipedia.\n",
251
+ "Indian Institute of Technology, Kharagpur\n",
252
+ "Student Researcher\n",
253
+ "August 2020 - November 2020 (4 months)\n",
254
+ "Kharagpur, West Bengal, India\n",
255
+ "- Architected a deep learning pipeline for super-resolution of high-resolution\n",
256
+ "satellite images, optimizing for PSNR score.\n",
257
+ "- Analyzed GAN-based super-resolution models, including SRGAN and\n",
258
+ "SRCNN, and image interpolation techniques.\n",
259
+ "- Replicated the ESRGAN model, achieving a 30.25 PSNR score, leveraging\n",
260
+ "QGIS and high-performance computing (HPC).\n",
261
+ "  Page 4 of 5   \n",
262
+ "Education\n",
263
+ "University of Southern California\n",
264
+ "Master of Science - MS, Applied Data Science · (January 2025 - December\n",
265
+ "2026)\n",
266
+ "Indian Institute of Technology, Kharagpur\n",
267
+ "Bachelor of Technology (Honours) - Electrical Engineering (Minor Computer\n",
268
+ "Science and Engineering)  · (August 2019 - April 2023)\n",
269
+ "  Page 5 of 5\n"
270
+ ]
271
+ }
272
+ ],
273
+ "source": [
274
+ "print(linkedin)"
275
+ ]
276
+ },
277
+ {
278
+ "cell_type": "code",
279
+ "execution_count": 5,
280
+ "metadata": {},
281
+ "outputs": [],
282
+ "source": [
283
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
284
+ " summary = f.read()"
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "code",
289
+ "execution_count": 7,
290
+ "metadata": {},
291
+ "outputs": [],
292
+ "source": [
293
+ "name = \"Shivam Bhosale\""
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": 8,
299
+ "metadata": {},
300
+ "outputs": [],
301
+ "source": [
302
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
303
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
304
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
305
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
306
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
307
+ "If you don't know the answer, say so.\"\n",
308
+ "\n",
309
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
310
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": 9,
316
+ "metadata": {},
317
+ "outputs": [
318
+ {
319
+ "data": {
320
+ "text/plain": [
321
+ "'You are acting as Shivam Bhosale. You are answering questions on Shivam Bhosale\\'s website, particularly questions related to Shivam Bhosale\\'s career, background, skills and experience. Your responsibility is to represent Shivam Bhosale for interactions on the website as faithfully as possible. You are given a summary of Shivam Bhosale\\'s background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don\\'t know the answer, say so.\\n\\n## Summary:\\nMy name is Shivam Bhosale. I\\'m a Master\\'s student at USC\\'s Viterbi School of Engineering enrolled in its Applied Data Science program. Before coming to USC, I worked at Adobe as a Software Developer. I\\'m originally from Pune, India.\\nI love to explore new places and opportunities that help me in my career.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\nShivam Nivas, \\nSr. No. 36/1,\\nYashwantnagar,\\nKharadi,\\nPune - 411014,\\nMaharashtra,\\nIndia.\\n9890359987 (Work)\\[email protected]\\nwww.linkedin.com/in/\\nbhosaleshivam (LinkedIn)\\nTop Skills\\nTensorFlow\\nKeras\\nConvolutional Neural Networks\\n(CNN)\\nCertifications\\nStatistics with Python\\nApplied Machine Learning in Python\\nMachine Learning\\nNeural Networks and Deep Learning\\nConvolutional Neural Networks\\nPublications\\nRoad segmentation: exploiting the\\nefficiency of skip connections for\\nefficient semantic segmentation\\nR2D2: Reducing Redundancy and\\nDuplication in Data Lakes\\nPatents\\nRelating Data in Data Lakes\\nShivam Bhosale\\nEx-Software Engineer @Adobe | AI Researcher | LLMs & NLP\\n| Python & PyTorch | Full-Stack Development | Master’s in Data\\nScience @ USC | IIT Kharagpur\\nLos Angeles, California, United States\\nSummary\\nHi, I’m a technologist and AI enthusiast, currently pursuing an M.S.\\nin Applied Data Science at the University of Southern California. I\\nbring a strong foundation in software development and AI research,\\nwith prior experience as a Member of Technical Staff at Adobe and a\\nB.Tech (Hons.) degree from IIT Kharagpur in Electrical Engineering\\nwith a minor in Computer Science.\\nI’m passionate about building products at the intersection of AI and\\nsoftware, delivering intuitive solutions that solve real problems.\\nI enjoy working across the stack: from training deep models\\nto deploying scalable systems with Python, C++, React, and\\nTypeScript.\\n✅ At Adobe, I worked on key feature releases for Adobe Captivate\\n(4 M+ users), integrating AI-driven functionalities like the AI Text to\\nAvatar feature, which was showcased at Adobe Learning Summit\\n2024 in Las Vegas.\\n✅ As a Research Intern at Adobe, I built the R2D2 model to reduce\\nstorage redundancy, which led to a US patent and a publication at\\nACM SIGMOD/PACMMOD 2024.\\n✅ For my thesis, I engineered a deep learning pipeline to extract\\nroad networks from satellite images, culminating in a research paper\\npublished in the Journal of South Asian Logistics and Transport.\\n✅ I also collaborated with researchers in London on Computer Vision\\nfor defect detection, achieving 96.92% accuracy using deep CNN\\narchitectures.\\nBeyond the technical, I was the General Secretary for Students’\\nWelfare, serving 18K+ students at IIT Kharagpur. Always up for\\nmeaningful conversations about AI, research, or tech innovation.\\nLet’s connect!\\n\\xa0 Page 1 of 5\\xa0 \\xa0\\nExperience\\nAdobe\\nMember of Technical Staff\\nJune 2023\\xa0-\\xa0November 2024\\xa0(1 year 6 months)\\nBengaluru, Karnataka, India\\nI worked on two major Adobe products\\n1. Adobe Captivate (desktop application) - I contributed to the front end\\n(TypeScript, React) and the back end (C++). Spot award nominee for\\ncontribution in \"AI Avatar in Captivate,\" which made it to the Adobe eLearning\\nSummit 2024 in Las Vegas, Text to Avatar.\\n2. Adobe eLearning Community Portal (website) - I contributed to maintaining\\nand developing the website (JavaScript, PHP, WordPress) and gained\\nproficiency in AWS, Splunk, and CICD pipelines. Integrated the AEM,\\nupgraded the WordPress version, and resolved PSIRT and vulnerability\\nissues.\\nResearch\\n1. LLMs in generating eLearning courses.\\n2. Question generation through NLP.\\n3. Cursor removal from screen recording video using Computer vision.\\nIndian Institute of Technology, Kharagpur\\nStudent Researcher (Bachelor’s Thesis)\\nMay 2022\\xa0-\\xa0May 2023\\xa0(1 year 1 month)\\nKharagpur, West Bengal, India\\n- Engineered end-to-end framework to extract road features from satellite\\nimages using CNN-based models. [https://github.com/bhosaleshivam/\\ntopology-enhanced]\\n- Evaluated and compared state-of-the-art models (U-Net, DeepLabV3+,\\nTopology-Enhanced) on the SpaceNet3 dataset.\\n- Improved road detection accuracy by 7.5% by proposing a new model\\narchitecture, especially in shadowed regions.\\nInstitute Wellness Group IIT Kharagpur\\n2 years 1 month\\nExecutive Head\\nJune 2021\\xa0-\\xa0August 2022\\xa0(1 year 3 months)\\nKharagpur, West Bengal, India\\nCore Team Member\\n\\xa0 Page 2 of 5\\xa0 \\xa0\\nAugust 2020\\xa0-\\xa0June 2021\\xa0(11 months)\\nKharagpur, West Bengal, India\\nAdobe\\nResearch Intern (Pre-Placement Offer Received)\\nMay 2022\\xa0-\\xa0July 2022\\xa0(3 months)\\nKharagpur Data Analytics Group\\n1 year 9 months\\nExecutive Head\\nJune 2021\\xa0-\\xa0June 2022\\xa0(1 year 1 month)\\nKharagpur, West Bengal, India\\nStudent Member\\nOctober 2020\\xa0-\\xa0June 2021\\xa0(9 months)\\nStudent Welfare Group, IIT Kharagpur\\nExecutive Head\\nAugust 2021\\xa0-\\xa0May 2022\\xa0(10 months)\\nTechnology Students\\' Gymkhana, IIT Kharagpur\\nGeneral Secretary Students\\' Welfare\\nAugust 2021\\xa0-\\xa0April 2022\\xa0(9 months)\\nKharagpur, West Bengal, India\\nLondon South Bank University\\nResearch Intern\\nMay 2021\\xa0-\\xa0June 2021\\xa0(2 months)\\nProject Title: “Semi-Automated Defect Inspection in Castings using Deep\\nConvolutional Neural Networks”\\nGuide: Prof. Bugra Alkan\\n• Objective: Detection and segmentation of casting defects with deep CNNs. \\n• Metrics: Accuracy (Classification), mAP (Object Detection).\\n• Achieved 96.92% accuracy in the classification task with an 11-layer CNN\\nnetwork consisting of Convolutional, Pooling and FC layers.\\n• Annotated defects with CVAT and Roboflow tools. Implemented various pre-\\ntrained models of EfficientDet family with the TensorFlow API.\\nIndian Institute of Technology, Kharagpur\\nComputer Vision Intern\\nMarch 2021\\xa0-\\xa0May 2021\\xa0(3 months)\\n\\xa0 Page 3 of 5\\xa0 \\xa0\\nProject Title: Automated Classification of Ulcerative Colitis Severity from\\nEndoscopic Images\\nGuide: Prof. Debdoot Sheet\\n• Objective: Development of neural network models for the classification of the\\ncaptured endoscopic images based on anatomical locations.\\n• Metrics: Accuracy, F1Score. \\n• Explored image enhancement techniques like the NBI, FICE, i-Scan used in\\nthe endoscopy (dye-less chromoendoscopy).\\n• Concluded 0.82 F1Score on the Kvasir Dataset after fine-tuning the various\\nversions of VGGNet, EfficientNet, XceptionNet, and ResNet.\\nEnglish Technology Dramatics Society: Encore\\nMember\\nAugust 2019\\xa0-\\xa0May 2021\\xa0(1 year 10 months)\\nKharagpur, West Bengal\\nJalla Labs Private Limited\\nAI Intern\\nDecember 2020\\xa0-\\xa0February 2021\\xa0(3 months)\\n• Extracted useful structured data and texts using OCR/Non-OCR techniques\\nfrom different resumes provided in various file formats.\\n• Built a User-Query-based resume ranking system, where the resumes were\\nranked given keywords, using Spacy and RegEx libraries.\\n• Deployed specific profile relevant extraction of information using NER\\n(Named Entity Recognition) method using the NLTK Python library.\\n• Stationed a web scrapper using Beautiful Soup that extracted user\\ninformation from LinkedIn and profile information from the Wikipedia.\\nIndian Institute of Technology, Kharagpur\\nStudent Researcher\\nAugust 2020\\xa0-\\xa0November 2020\\xa0(4 months)\\nKharagpur, West Bengal, India\\n- Architected a deep learning pipeline for super-resolution of high-resolution\\nsatellite images, optimizing for PSNR score.\\n- Analyzed GAN-based super-resolution models, including SRGAN and\\nSRCNN, and image interpolation techniques.\\n- Replicated the ESRGAN model, achieving a 30.25 PSNR score, leveraging\\nQGIS and high-performance computing (HPC).\\n\\xa0 Page 4 of 5\\xa0 \\xa0\\nEducation\\nUniversity of Southern California\\nMaster of Science - MS,\\xa0Applied Data Science\\xa0·\\xa0(January 2025\\xa0-\\xa0December\\n2026)\\nIndian Institute of Technology, Kharagpur\\nBachelor of Technology (Honours) - Electrical Engineering (Minor Computer\\nScience and Engineering)\\xa0\\xa0·\\xa0(August 2019\\xa0-\\xa0April 2023)\\n\\xa0 Page 5 of 5\\n\\nWith this context, please chat with the user, always staying in character as Shivam Bhosale.'"
322
+ ]
323
+ },
324
+ "execution_count": 9,
325
+ "metadata": {},
326
+ "output_type": "execute_result"
327
+ }
328
+ ],
329
+ "source": [
330
+ "system_prompt"
331
+ ]
332
+ },
333
+ {
334
+ "cell_type": "code",
335
+ "execution_count": 10,
336
+ "metadata": {},
337
+ "outputs": [],
338
+ "source": [
339
+ "def chat(message, history):\n",
340
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
341
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
342
+ " return response.choices[0].message.content"
343
+ ]
344
+ },
345
+ {
346
+ "cell_type": "code",
347
+ "execution_count": 11,
348
+ "metadata": {},
349
+ "outputs": [
350
+ {
351
+ "name": "stdout",
352
+ "output_type": "stream",
353
+ "text": [
354
+ "* Running on local URL: http://127.0.0.1:7860\n",
355
+ "* To create a public link, set `share=True` in `launch()`.\n"
356
+ ]
357
+ },
358
+ {
359
+ "data": {
360
+ "text/html": [
361
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
362
+ ],
363
+ "text/plain": [
364
+ "<IPython.core.display.HTML object>"
365
+ ]
366
+ },
367
+ "metadata": {},
368
+ "output_type": "display_data"
369
+ },
370
+ {
371
+ "data": {
372
+ "text/plain": []
373
+ },
374
+ "execution_count": 11,
375
+ "metadata": {},
376
+ "output_type": "execute_result"
377
+ }
378
+ ],
379
+ "source": [
380
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
381
+ ]
382
+ },
383
+ {
384
+ "cell_type": "markdown",
385
+ "metadata": {},
386
+ "source": [
387
+ "## A lot is about to happen...\n",
388
+ "\n",
389
+ "1. Be able to ask an LLM to evaluate an answer\n",
390
+ "2. Be able to rerun if the answer fails evaluation\n",
391
+ "3. Put this together into 1 workflow\n",
392
+ "\n",
393
+ "All without any Agentic framework!"
394
+ ]
395
+ },
396
+ {
397
+ "cell_type": "code",
398
+ "execution_count": 12,
399
+ "metadata": {},
400
+ "outputs": [],
401
+ "source": [
402
+ "# Create a Pydantic model for the Evaluation\n",
403
+ "\n",
404
+ "from pydantic import BaseModel\n",
405
+ "\n",
406
+ "class Evaluation(BaseModel):\n",
407
+ " is_acceptable: bool\n",
408
+ " feedback: str\n"
409
+ ]
410
+ },
411
+ {
412
+ "cell_type": "code",
413
+ "execution_count": 13,
414
+ "metadata": {},
415
+ "outputs": [],
416
+ "source": [
417
+ "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
418
+ "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
419
+ "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
420
+ "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
421
+ "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
422
+ "\n",
423
+ "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
424
+ "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
425
+ ]
426
+ },
427
+ {
428
+ "cell_type": "code",
429
+ "execution_count": 14,
430
+ "metadata": {},
431
+ "outputs": [],
432
+ "source": [
433
+ "def evaluator_user_prompt(reply, message, history):\n",
434
+ " user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
435
+ " user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
436
+ " user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
437
+ " user_prompt += f\"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
438
+ " return user_prompt"
439
+ ]
440
+ },
441
+ {
442
+ "cell_type": "code",
443
+ "execution_count": 15,
444
+ "metadata": {},
445
+ "outputs": [],
446
+ "source": [
447
+ "import os\n",
448
+ "gemini = OpenAI(\n",
449
+ " api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
450
+ " base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
451
+ ")"
452
+ ]
453
+ },
454
+ {
455
+ "cell_type": "code",
456
+ "execution_count": 16,
457
+ "metadata": {},
458
+ "outputs": [],
459
+ "source": [
460
+ "def evaluate(reply, message, history) -> Evaluation:\n",
461
+ "\n",
462
+ " messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
463
+ " response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
464
+ " return response.choices[0].message.parsed"
465
+ ]
466
+ },
467
+ {
468
+ "cell_type": "code",
469
+ "execution_count": 17,
470
+ "metadata": {},
471
+ "outputs": [],
472
+ "source": [
473
+ "messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
474
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
475
+ "reply = response.choices[0].message.content"
476
+ ]
477
+ },
478
+ {
479
+ "cell_type": "code",
480
+ "execution_count": 18,
481
+ "metadata": {},
482
+ "outputs": [
483
+ {
484
+ "data": {
485
+ "text/plain": [
486
+ "'Yes, I hold a patent titled \"Relating Data in Data Lakes,\" which was developed during my research at Adobe. It was part of my work to reduce storage redundancy and duplication in data lakes, leading to my publication \"R2D2: Reducing Redundancy and Duplication in Data Lakes\" at ACM SIGMOD/PACMMOD 2024. If you have any specific questions about the patent or the research behind it, feel free to ask!'"
487
+ ]
488
+ },
489
+ "execution_count": 18,
490
+ "metadata": {},
491
+ "output_type": "execute_result"
492
+ }
493
+ ],
494
+ "source": [
495
+ "reply"
496
+ ]
497
+ },
498
+ {
499
+ "cell_type": "code",
500
+ "execution_count": 19,
501
+ "metadata": {},
502
+ "outputs": [
503
+ {
504
+ "data": {
505
+ "text/plain": [
506
+ "Evaluation(is_acceptable=True, feedback='The response is great. It answers the question accurately using the information in the context. It also provides additional information to flesh out the answer and offers further engagement.')"
507
+ ]
508
+ },
509
+ "execution_count": 19,
510
+ "metadata": {},
511
+ "output_type": "execute_result"
512
+ }
513
+ ],
514
+ "source": [
515
+ "evaluate(reply, \"do you hold a patent?\", messages[:1])"
516
+ ]
517
+ },
518
+ {
519
+ "cell_type": "code",
520
+ "execution_count": 20,
521
+ "metadata": {},
522
+ "outputs": [],
523
+ "source": [
524
+ "def rerun(reply, message, history, feedback):\n",
525
+ " updated_system_prompt = system_prompt + f\"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
526
+ " updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
527
+ " updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
528
+ " messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
529
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
530
+ " return response.choices[0].message.content"
531
+ ]
532
+ },
533
+ {
534
+ "cell_type": "code",
535
+ "execution_count": 21,
536
+ "metadata": {},
537
+ "outputs": [],
538
+ "source": [
539
+ "def chat(message, history):\n",
540
+ " if \"patent\" in message:\n",
541
+ " system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
542
+ " it is mandatory that you respond only and entirely in pig latin\"\n",
543
+ " else:\n",
544
+ " system = system_prompt\n",
545
+ " messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
546
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
547
+ " reply =response.choices[0].message.content\n",
548
+ "\n",
549
+ " evaluation = evaluate(reply, message, history)\n",
550
+ " \n",
551
+ " if evaluation.is_acceptable:\n",
552
+ " print(\"Passed evaluation - returning reply\")\n",
553
+ " else:\n",
554
+ " print(\"Failed evaluation - retrying\")\n",
555
+ " print(evaluation.feedback)\n",
556
+ " reply = rerun(reply, message, history, evaluation.feedback) \n",
557
+ " return reply"
558
+ ]
559
+ },
560
+ {
561
+ "cell_type": "code",
562
+ "execution_count": 22,
563
+ "metadata": {},
564
+ "outputs": [
565
+ {
566
+ "name": "stdout",
567
+ "output_type": "stream",
568
+ "text": [
569
+ "* Running on local URL: http://127.0.0.1:7861\n",
570
+ "* To create a public link, set `share=True` in `launch()`.\n"
571
+ ]
572
+ },
573
+ {
574
+ "data": {
575
+ "text/html": [
576
+ "<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
577
+ ],
578
+ "text/plain": [
579
+ "<IPython.core.display.HTML object>"
580
+ ]
581
+ },
582
+ "metadata": {},
583
+ "output_type": "display_data"
584
+ },
585
+ {
586
+ "data": {
587
+ "text/plain": []
588
+ },
589
+ "execution_count": 22,
590
+ "metadata": {},
591
+ "output_type": "execute_result"
592
+ },
593
+ {
594
+ "name": "stdout",
595
+ "output_type": "stream",
596
+ "text": [
597
+ "Failed evaluation - retrying\n",
598
+ "The response is nonsensical and does not answer the user's question in a professional manner. The agent is intended to be representing Shivam Bhosale's website and this response is not appropriate.\n"
599
+ ]
600
+ }
601
+ ],
602
+ "source": [
603
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
604
+ ]
605
+ },
606
+ {
607
+ "cell_type": "markdown",
608
+ "metadata": {},
609
+ "source": []
610
+ },
611
+ {
612
+ "cell_type": "code",
613
+ "execution_count": null,
614
+ "metadata": {},
615
+ "outputs": [],
616
+ "source": []
617
+ }
618
+ ],
619
+ "metadata": {
620
+ "kernelspec": {
621
+ "display_name": ".venv",
622
+ "language": "python",
623
+ "name": "python3"
624
+ },
625
+ "language_info": {
626
+ "codemirror_mode": {
627
+ "name": "ipython",
628
+ "version": 3
629
+ },
630
+ "file_extension": ".py",
631
+ "mimetype": "text/x-python",
632
+ "name": "python",
633
+ "nbconvert_exporter": "python",
634
+ "pygments_lexer": "ipython3",
635
+ "version": "3.12.7"
636
+ }
637
+ },
638
+ "nbformat": 4,
639
+ "nbformat_minor": 2
640
+ }
4_lab4.ipynb ADDED
@@ -0,0 +1,540 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## The first big project - Professionally You!\n",
8
+ "\n",
9
+ "### And, Tool use.\n",
10
+ "\n",
11
+ "### But first: introducing Pushover\n",
12
+ "\n",
13
+ "Pushover is a nifty tool for sending Push Notifications to your phone.\n",
14
+ "\n",
15
+ "It's super easy to set up and install!\n",
16
+ "\n",
17
+ "Simply visit https://pushover.net/ and sign up for a free account, and create your API keys.\n",
18
+ "\n",
19
+ "As student Ron pointed out (thank you Ron!) there are actually 2 tokens to create in Pushover: \n",
20
+ "1. The User token which you get from the home page of Pushover\n",
21
+ "2. The Application token which you get by going to https://pushover.net/apps/build and creating an app \n",
22
+ "\n",
23
+ "(This is so you could choose to organize your push notifications into different apps in the future.)\n",
24
+ "\n",
25
+ "\n",
26
+ "Add to your `.env` file:\n",
27
+ "```\n",
28
+ "PUSHOVER_USER=put_your_user_token_here\n",
29
+ "PUSHOVER_TOKEN=put_the_application_level_token_here\n",
30
+ "```\n",
31
+ "\n",
32
+ "And install the Pushover app on your phone."
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 1,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "# imports\n",
42
+ "\n",
43
+ "from dotenv import load_dotenv\n",
44
+ "from openai import OpenAI\n",
45
+ "import json\n",
46
+ "import os\n",
47
+ "import requests\n",
48
+ "from pypdf import PdfReader\n",
49
+ "import gradio as gr"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": 24,
55
+ "metadata": {},
56
+ "outputs": [],
57
+ "source": [
58
+ "# The usual start\n",
59
+ "\n",
60
+ "load_dotenv(override=True)\n",
61
+ "openai = OpenAI()"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 3,
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "# For pushover\n",
71
+ "\n",
72
+ "pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
73
+ "pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
74
+ "pushover_url = \"https://api.pushover.net/1/messages.json\""
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 4,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "def push(message):\n",
84
+ " print(f\"Push: {message}\")\n",
85
+ " payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
86
+ " requests.post(pushover_url, data=payload)"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": 7,
92
+ "metadata": {},
93
+ "outputs": [
94
+ {
95
+ "name": "stdout",
96
+ "output_type": "stream",
97
+ "text": [
98
+ "Push: HEY!!\n"
99
+ ]
100
+ }
101
+ ],
102
+ "source": [
103
+ "push(\"HEY!!\")"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": 8,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
113
+ " push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
114
+ " return {\"recorded\": \"ok\"}"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 9,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "def record_unknown_question(question):\n",
124
+ " push(f\"Recording {question} asked that I couldn't answer\")\n",
125
+ " return {\"recorded\": \"ok\"}"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": 10,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "record_user_details_json = {\n",
135
+ " \"name\": \"record_user_details\",\n",
136
+ " \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
137
+ " \"parameters\": {\n",
138
+ " \"type\": \"object\",\n",
139
+ " \"properties\": {\n",
140
+ " \"email\": {\n",
141
+ " \"type\": \"string\",\n",
142
+ " \"description\": \"The email address of this user\"\n",
143
+ " },\n",
144
+ " \"name\": {\n",
145
+ " \"type\": \"string\",\n",
146
+ " \"description\": \"The user's name, if they provided it\"\n",
147
+ " }\n",
148
+ " ,\n",
149
+ " \"notes\": {\n",
150
+ " \"type\": \"string\",\n",
151
+ " \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
152
+ " }\n",
153
+ " },\n",
154
+ " \"required\": [\"email\"],\n",
155
+ " \"additionalProperties\": False\n",
156
+ " }\n",
157
+ "}"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": 11,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "record_unknown_question_json = {\n",
167
+ " \"name\": \"record_unknown_question\",\n",
168
+ " \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
169
+ " \"parameters\": {\n",
170
+ " \"type\": \"object\",\n",
171
+ " \"properties\": {\n",
172
+ " \"question\": {\n",
173
+ " \"type\": \"string\",\n",
174
+ " \"description\": \"The question that couldn't be answered\"\n",
175
+ " },\n",
176
+ " },\n",
177
+ " \"required\": [\"question\"],\n",
178
+ " \"additionalProperties\": False\n",
179
+ " }\n",
180
+ "}"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": 12,
186
+ "metadata": {},
187
+ "outputs": [],
188
+ "source": [
189
+ "tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
190
+ " {\"type\": \"function\", \"function\": record_unknown_question_json}]"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": 13,
196
+ "metadata": {},
197
+ "outputs": [
198
+ {
199
+ "data": {
200
+ "text/plain": [
201
+ "[{'type': 'function',\n",
202
+ " 'function': {'name': 'record_user_details',\n",
203
+ " 'description': 'Use this tool to record that a user is interested in being in touch and provided an email address',\n",
204
+ " 'parameters': {'type': 'object',\n",
205
+ " 'properties': {'email': {'type': 'string',\n",
206
+ " 'description': 'The email address of this user'},\n",
207
+ " 'name': {'type': 'string',\n",
208
+ " 'description': \"The user's name, if they provided it\"},\n",
209
+ " 'notes': {'type': 'string',\n",
210
+ " 'description': \"Any additional information about the conversation that's worth recording to give context\"}},\n",
211
+ " 'required': ['email'],\n",
212
+ " 'additionalProperties': False}}},\n",
213
+ " {'type': 'function',\n",
214
+ " 'function': {'name': 'record_unknown_question',\n",
215
+ " 'description': \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
216
+ " 'parameters': {'type': 'object',\n",
217
+ " 'properties': {'question': {'type': 'string',\n",
218
+ " 'description': \"The question that couldn't be answered\"}},\n",
219
+ " 'required': ['question'],\n",
220
+ " 'additionalProperties': False}}}]"
221
+ ]
222
+ },
223
+ "execution_count": 13,
224
+ "metadata": {},
225
+ "output_type": "execute_result"
226
+ }
227
+ ],
228
+ "source": [
229
+ "tools"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "code",
234
+ "execution_count": 14,
235
+ "metadata": {},
236
+ "outputs": [],
237
+ "source": [
238
+ "# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
239
+ "\n",
240
+ "def handle_tool_calls(tool_calls):\n",
241
+ " results = []\n",
242
+ " for tool_call in tool_calls:\n",
243
+ " tool_name = tool_call.function.name\n",
244
+ " arguments = json.loads(tool_call.function.arguments)\n",
245
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
246
+ "\n",
247
+ " # THE BIG IF STATEMENT!!!\n",
248
+ "\n",
249
+ " if tool_name == \"record_user_details\":\n",
250
+ " result = record_user_details(**arguments)\n",
251
+ " elif tool_name == \"record_unknown_question\":\n",
252
+ " result = record_unknown_question(**arguments)\n",
253
+ "\n",
254
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
255
+ " return results"
256
+ ]
257
+ },
258
+ {
259
+ "cell_type": "code",
260
+ "execution_count": 15,
261
+ "metadata": {},
262
+ "outputs": [
263
+ {
264
+ "name": "stdout",
265
+ "output_type": "stream",
266
+ "text": [
267
+ "Push: Recording this is a really hard question asked that I couldn't answer\n"
268
+ ]
269
+ },
270
+ {
271
+ "data": {
272
+ "text/plain": [
273
+ "{'recorded': 'ok'}"
274
+ ]
275
+ },
276
+ "execution_count": 15,
277
+ "metadata": {},
278
+ "output_type": "execute_result"
279
+ }
280
+ ],
281
+ "source": [
282
+ "globals()[\"record_unknown_question\"](\"this is a really hard question\")"
283
+ ]
284
+ },
285
+ {
286
+ "cell_type": "code",
287
+ "execution_count": 16,
288
+ "metadata": {},
289
+ "outputs": [],
290
+ "source": [
291
+ "# This is a more elegant way that avoids the IF statement.\n",
292
+ "\n",
293
+ "def handle_tool_calls(tool_calls):\n",
294
+ " results = []\n",
295
+ " for tool_call in tool_calls:\n",
296
+ " tool_name = tool_call.function.name\n",
297
+ " arguments = json.loads(tool_call.function.arguments)\n",
298
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
299
+ " tool = globals().get(tool_name)\n",
300
+ " result = tool(**arguments) if tool else {}\n",
301
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
302
+ " return results"
303
+ ]
304
+ },
305
+ {
306
+ "cell_type": "code",
307
+ "execution_count": 20,
308
+ "metadata": {},
309
+ "outputs": [],
310
+ "source": [
311
+ "reader = PdfReader(\"me/linkedin.pdf\")\n",
312
+ "linkedin = \"\"\n",
313
+ "for page in reader.pages:\n",
314
+ " text = page.extract_text()\n",
315
+ " if text:\n",
316
+ " linkedin += text\n",
317
+ "\n",
318
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
319
+ " summary = f.read()\n",
320
+ "\n",
321
+ "name = \"Shivam Bhosale\""
322
+ ]
323
+ },
324
+ {
325
+ "cell_type": "code",
326
+ "execution_count": 21,
327
+ "metadata": {},
328
+ "outputs": [],
329
+ "source": [
330
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
331
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
332
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
333
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
334
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
335
+ "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
336
+ "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
337
+ "\n",
338
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
339
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": 22,
345
+ "metadata": {},
346
+ "outputs": [],
347
+ "source": [
348
+ "def chat(message, history):\n",
349
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
350
+ " done = False\n",
351
+ " while not done:\n",
352
+ "\n",
353
+ " # This is the call to the LLM - see that we pass in the tools json\n",
354
+ "\n",
355
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
356
+ "\n",
357
+ " finish_reason = response.choices[0].finish_reason\n",
358
+ " \n",
359
+ " # If the LLM wants to call a tool, we do that!\n",
360
+ " \n",
361
+ " if finish_reason==\"tool_calls\":\n",
362
+ " message = response.choices[0].message\n",
363
+ " tool_calls = message.tool_calls\n",
364
+ " results = handle_tool_calls(tool_calls)\n",
365
+ " messages.append(message)\n",
366
+ " messages.extend(results)\n",
367
+ " else:\n",
368
+ " done = True\n",
369
+ " return response.choices[0].message.content"
370
+ ]
371
+ },
372
+ {
373
+ "cell_type": "code",
374
+ "execution_count": 23,
375
+ "metadata": {},
376
+ "outputs": [
377
+ {
378
+ "name": "stdout",
379
+ "output_type": "stream",
380
+ "text": [
381
+ "* Running on local URL: http://127.0.0.1:7860\n",
382
+ "* To create a public link, set `share=True` in `launch()`.\n"
383
+ ]
384
+ },
385
+ {
386
+ "data": {
387
+ "text/html": [
388
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
389
+ ],
390
+ "text/plain": [
391
+ "<IPython.core.display.HTML object>"
392
+ ]
393
+ },
394
+ "metadata": {},
395
+ "output_type": "display_data"
396
+ },
397
+ {
398
+ "data": {
399
+ "text/plain": []
400
+ },
401
+ "execution_count": 23,
402
+ "metadata": {},
403
+ "output_type": "execute_result"
404
+ },
405
+ {
406
+ "name": "stdout",
407
+ "output_type": "stream",
408
+ "text": [
409
+ "Tool called: record_unknown_question\n",
410
+ "Push: Recording Who is Shivam Bhosale's favorite music artist? asked that I couldn't answer\n",
411
+ "Tool called: record_user_details\n",
412
+ "Push: Recording interest from Name not provided with email [email protected] and notes not provided\n"
413
+ ]
414
+ }
415
+ ],
416
+ "source": [
417
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
418
+ ]
419
+ },
420
+ {
421
+ "cell_type": "markdown",
422
+ "metadata": {},
423
+ "source": [
424
+ "## And now for deployment\n",
425
+ "\n",
426
+ "This code is in `app.py`\n",
427
+ "\n",
428
+ "We will deploy to HuggingFace Spaces. Thank you student Robert M for improving these instructions.\n",
429
+ "\n",
430
+ "Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! \n",
431
+ "Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
432
+ "\n",
433
+ "1. Visit https://huggingface.co and set up an account \n",
434
+ "2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions.\n",
435
+ "3. Take this token and add it to your .env file: `HF_TOKEN=hf_xxx` and see note below if this token doesn't seem to get picked up during deployment \n",
436
+ "4. From the 1_foundations folder, enter: `uv run gradio deploy` and if for some reason this still wants you to enter your HF token, then interrupt it with ctrl+c and run this instead: `uv run dotenv -f ../.env run -- uv run gradio deploy` which forces your keys to all be set as environment variables \n",
437
+ "5. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
438
+ "\n",
439
+ "#### Extra note about the HuggingFace token\n",
440
+ "\n",
441
+ "A couple of students have mentioned the HuggingFace doesn't detect their token, even though it's in the .env file. Here are things to try: \n",
442
+ "1. Restart Cursor \n",
443
+ "2. Rerun load_dotenv(override=True) and use a new terminal (the + button on the top right of the Terminal) \n",
444
+ "3. In the Terminal, run this before the gradio deploy: `$env:HF_TOKEN = \"hf_XXXX\"` \n",
445
+ "Thank you James and Martins for these tips. \n",
446
+ "\n",
447
+ "#### More about these secrets:\n",
448
+ "\n",
449
+ "If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
450
+ "`OPENAI_API_KEY` \n",
451
+ "Followed by: \n",
452
+ "`sk-proj-...` \n",
453
+ "\n",
454
+ "And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
455
+ "1. Log in to HuggingFace website \n",
456
+ "2. Go to your profile screen via the Avatar menu on the top right \n",
457
+ "3. Select the Space you deployed \n",
458
+ "4. Click on the Settings wheel on the top right \n",
459
+ "5. You can scroll down to change your secrets, delete the space, etc.\n",
460
+ "\n",
461
+ "#### And now you should be deployed!\n",
462
+ "\n",
463
+ "Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
464
+ "\n",
465
+ "I just got a push notification that a student asked me how they can become President of their country 😂😂\n",
466
+ "\n",
467
+ "For more information on deployment:\n",
468
+ "\n",
469
+ "https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
470
+ "\n",
471
+ "To delete your Space in the future: \n",
472
+ "1. Log in to HuggingFace\n",
473
+ "2. From the Avatar menu, select your profile\n",
474
+ "3. Click on the Space itself\n",
475
+ "4. Click the settings wheel on the top right\n",
476
+ "5. Scroll to the Delete section at the bottom\n"
477
+ ]
478
+ },
479
+ {
480
+ "cell_type": "markdown",
481
+ "metadata": {},
482
+ "source": [
483
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
484
+ " <tr>\n",
485
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
486
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
487
+ " </td>\n",
488
+ " <td>\n",
489
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
490
+ " <span style=\"color:#ff7800;\">• First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
491
+ " • Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
492
+ " • Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
493
+ " • Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
494
+ " </span>\n",
495
+ " </td>\n",
496
+ " </tr>\n",
497
+ "</table>"
498
+ ]
499
+ },
500
+ {
501
+ "cell_type": "markdown",
502
+ "metadata": {},
503
+ "source": [
504
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
505
+ " <tr>\n",
506
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
507
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
508
+ " </td>\n",
509
+ " <td>\n",
510
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
511
+ " <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
512
+ " </span>\n",
513
+ " </td>\n",
514
+ " </tr>\n",
515
+ "</table>"
516
+ ]
517
+ }
518
+ ],
519
+ "metadata": {
520
+ "kernelspec": {
521
+ "display_name": ".venv",
522
+ "language": "python",
523
+ "name": "python3"
524
+ },
525
+ "language_info": {
526
+ "codemirror_mode": {
527
+ "name": "ipython",
528
+ "version": 3
529
+ },
530
+ "file_extension": ".py",
531
+ "mimetype": "text/x-python",
532
+ "name": "python",
533
+ "nbconvert_exporter": "python",
534
+ "pygments_lexer": "ipython3",
535
+ "version": "3.12.7"
536
+ }
537
+ },
538
+ "nbformat": 4,
539
+ "nbformat_minor": 2
540
+ }
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: 1 Foundations
3
- emoji: 🌍
4
- colorFrom: yellow
5
- colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.31.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: 1_foundations
3
+ app_file: app.py
 
 
4
  sdk: gradio
5
  sdk_version: 5.31.0
 
 
6
  ---
 
 
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ from openai import OpenAI
3
+ import json
4
+ import os
5
+ import requests
6
+ from pypdf import PdfReader
7
+ import gradio as gr
8
+
9
+
10
+ load_dotenv(override=True)
11
+
12
+ def push(text):
13
+ requests.post(
14
+ "https://api.pushover.net/1/messages.json",
15
+ data={
16
+ "token": os.getenv("PUSHOVER_TOKEN"),
17
+ "user": os.getenv("PUSHOVER_USER"),
18
+ "message": text,
19
+ }
20
+ )
21
+
22
+
23
+ def record_user_details(email, name="Name not provided", notes="not provided"):
24
+ push(f"Recording {name} with email {email} and notes {notes}")
25
+ return {"recorded": "ok"}
26
+
27
+ def record_unknown_question(question):
28
+ push(f"Recording {question}")
29
+ return {"recorded": "ok"}
30
+
31
+ record_user_details_json = {
32
+ "name": "record_user_details",
33
+ "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
34
+ "parameters": {
35
+ "type": "object",
36
+ "properties": {
37
+ "email": {
38
+ "type": "string",
39
+ "description": "The email address of this user"
40
+ },
41
+ "name": {
42
+ "type": "string",
43
+ "description": "The user's name, if they provided it"
44
+ }
45
+ ,
46
+ "notes": {
47
+ "type": "string",
48
+ "description": "Any additional information about the conversation that's worth recording to give context"
49
+ }
50
+ },
51
+ "required": ["email"],
52
+ "additionalProperties": False
53
+ }
54
+ }
55
+
56
+ record_unknown_question_json = {
57
+ "name": "record_unknown_question",
58
+ "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
59
+ "parameters": {
60
+ "type": "object",
61
+ "properties": {
62
+ "question": {
63
+ "type": "string",
64
+ "description": "The question that couldn't be answered"
65
+ },
66
+ },
67
+ "required": ["question"],
68
+ "additionalProperties": False
69
+ }
70
+ }
71
+
72
+ tools = [{"type": "function", "function": record_user_details_json},
73
+ {"type": "function", "function": record_unknown_question_json}]
74
+
75
+
76
+ class Me:
77
+
78
+ def __init__(self):
79
+ self.openai = OpenAI()
80
+ self.name = "Shivam Bhosale"
81
+ reader = PdfReader("me/linkedin.pdf")
82
+ self.linkedin = ""
83
+ for page in reader.pages:
84
+ text = page.extract_text()
85
+ if text:
86
+ self.linkedin += text
87
+ with open("me/summary.txt", "r", encoding="utf-8") as f:
88
+ self.summary = f.read()
89
+
90
+
91
+ def handle_tool_call(self, tool_calls):
92
+ results = []
93
+ for tool_call in tool_calls:
94
+ tool_name = tool_call.function.name
95
+ arguments = json.loads(tool_call.function.arguments)
96
+ print(f"Tool called: {tool_name}", flush=True)
97
+ tool = globals().get(tool_name)
98
+ result = tool(**arguments) if tool else {}
99
+ results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
100
+ return results
101
+
102
+ def system_prompt(self):
103
+ system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
104
+ particularly questions related to {self.name}'s career, background, skills and experience. \
105
+ Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
106
+ You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
107
+ Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
108
+ If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
109
+ If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
110
+
111
+ system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
112
+ system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
113
+ return system_prompt
114
+
115
+ def chat(self, message, history):
116
+ messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
117
+ done = False
118
+ while not done:
119
+ response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
120
+ if response.choices[0].finish_reason=="tool_calls":
121
+ message = response.choices[0].message
122
+ tool_calls = message.tool_calls
123
+ results = self.handle_tool_call(tool_calls)
124
+ messages.append(message)
125
+ messages.extend(results)
126
+ else:
127
+ done = True
128
+ return response.choices[0].message.content
129
+
130
+
131
+ if __name__ == "__main__":
132
+ me = Me()
133
+ gr.ChatInterface(me.chat, type="messages").launch()
134
+
community_contributions/1_lab1_Mudassar.ipynb ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# First Agentic AI workflow with OPENAI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "#### And please do remember to contact me if I can help\n",
15
+ "\n",
16
+ "And I love to connect: https://www.linkedin.com/in/muhammad-mudassar-a65645192/"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {},
22
+ "source": [
23
+ "## Import Libraries"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 59,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "import os\n",
33
+ "import re\n",
34
+ "from openai import OpenAI\n",
35
+ "from dotenv import load_dotenv\n",
36
+ "from IPython.display import Markdown, display"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "load_dotenv(override=True)"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "openai_api_key=os.getenv(\"OPENAI_API_KEY\")\n",
55
+ "if openai_api_key:\n",
56
+ " print(f\"openai api key exists and begins {openai_api_key[:8]}\")\n",
57
+ "else:\n",
58
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the gui\")"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "metadata": {},
64
+ "source": [
65
+ "## Workflow with OPENAI"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 21,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "openai=OpenAI()"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 31,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "message = [{'role':'user','content':\"what is 2+3?\"}]"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
93
+ "print(response.choices[0].message.content)"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 33,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
103
+ "message=[{'role':'user','content':question}]"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
113
+ "question=response.choices[0].message.content\n",
114
+ "print(f\"Answer: {question}\")"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 35,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "message=[{'role':'user','content':question}]"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
133
+ "answer = response.choices[0].message.content\n",
134
+ "print(f\"Answer: {answer}\")"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "# convert \\[ ... \\] to $$ ... $$, to properly render Latex\n",
144
+ "converted_answer = re.sub(r'\\\\[\\[\\]]', '$$', answer)\n",
145
+ "display(Markdown(converted_answer))"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "markdown",
150
+ "metadata": {},
151
+ "source": [
152
+ "## Exercise"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "markdown",
157
+ "metadata": {},
158
+ "source": [
159
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
160
+ " <tr>\n",
161
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
162
+ " <img src=\"../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
163
+ " </td>\n",
164
+ " <td>\n",
165
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
166
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
167
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
168
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
169
+ " </span>\n",
170
+ " </td>\n",
171
+ " </tr>\n",
172
+ "</table>"
173
+ ]
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": 42,
178
+ "metadata": {},
179
+ "outputs": [],
180
+ "source": [
181
+ "message = [{'role':'user','content':\"give me a business area related to ecommerce that might be worth exploring for a agentic opportunity.\"}]"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": null,
187
+ "metadata": {},
188
+ "outputs": [],
189
+ "source": [
190
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
191
+ "business_area = response.choices[0].message.content\n",
192
+ "business_area"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": null,
198
+ "metadata": {},
199
+ "outputs": [],
200
+ "source": [
201
+ "message = business_area + \"present a pain-point in that industry - something challenging that might be ripe for an agentic solutions.\"\n",
202
+ "message"
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": null,
208
+ "metadata": {},
209
+ "outputs": [],
210
+ "source": [
211
+ "message = [{'role': 'user', 'content': message}]\n",
212
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
213
+ "question=response.choices[0].message.content\n",
214
+ "question"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "message=[{'role':'user','content':question}]\n",
224
+ "response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
225
+ "answer=response.choices[0].message.content\n",
226
+ "print(answer)"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "display(Markdown(answer))"
236
+ ]
237
+ }
238
+ ],
239
+ "metadata": {
240
+ "kernelspec": {
241
+ "display_name": ".venv",
242
+ "language": "python",
243
+ "name": "python3"
244
+ },
245
+ "language_info": {
246
+ "codemirror_mode": {
247
+ "name": "ipython",
248
+ "version": 3
249
+ },
250
+ "file_extension": ".py",
251
+ "mimetype": "text/x-python",
252
+ "name": "python",
253
+ "nbconvert_exporter": "python",
254
+ "pygments_lexer": "ipython3",
255
+ "version": "3.12.5"
256
+ }
257
+ },
258
+ "nbformat": 4,
259
+ "nbformat_minor": 2
260
+ }
community_contributions/1_lab1_Thanh.ipynb ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "### And please do remember to contact me if I can help\n",
15
+ "\n",
16
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
17
+ "\n",
18
+ "\n",
19
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
20
+ "\n",
21
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
22
+ "- Open extensions (View >> extensions)\n",
23
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
24
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
25
+ "Then View >> Explorer to bring back the File Explorer.\n",
26
+ "\n",
27
+ "And then:\n",
28
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
29
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
30
+ "3. Enjoy!\n",
31
+ "\n",
32
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
33
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
34
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
35
+ "2. In the Settings search bar, type \"venv\" \n",
36
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
37
+ "And then try again.\n",
38
+ "\n",
39
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
40
+ "`conda deactivate` \n",
41
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
42
+ "`conda config --set auto_activate_base false` \n",
43
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "from dotenv import load_dotenv\n",
53
+ "load_dotenv()"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Check the keys\n",
63
+ "import google.generativeai as genai\n",
64
+ "import os\n",
65
+ "genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))\n",
66
+ "model = genai.GenerativeModel(model_name=\"gemini-1.5-flash\")\n"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "# Create a list of messages in the familiar Gemini GenAI format\n",
76
+ "\n",
77
+ "response = model.generate_content([\"2+2=?\"])\n",
78
+ "response.text"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "# And now - let's ask for a question:\n",
88
+ "\n",
89
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
90
+ "\n",
91
+ "response = model.generate_content([question])\n",
92
+ "print(response.text)"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "from IPython.display import Markdown, display\n",
102
+ "\n",
103
+ "display(Markdown(response.text))"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "markdown",
108
+ "metadata": {},
109
+ "source": [
110
+ "# Congratulations!\n",
111
+ "\n",
112
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
113
+ "\n",
114
+ "Next time things get more interesting..."
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "# First create the messages:\n",
124
+ "\n",
125
+ "messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
126
+ "\n",
127
+ "# Then make the first call:\n",
128
+ "\n",
129
+ "response =\n",
130
+ "\n",
131
+ "# Then read the business idea:\n",
132
+ "\n",
133
+ "business_idea = response.\n",
134
+ "\n",
135
+ "# And repeat!"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "markdown",
140
+ "metadata": {},
141
+ "source": []
142
+ }
143
+ ],
144
+ "metadata": {
145
+ "kernelspec": {
146
+ "display_name": "llm_projects",
147
+ "language": "python",
148
+ "name": "python3"
149
+ },
150
+ "language_info": {
151
+ "codemirror_mode": {
152
+ "name": "ipython",
153
+ "version": 3
154
+ },
155
+ "file_extension": ".py",
156
+ "mimetype": "text/x-python",
157
+ "name": "python",
158
+ "nbconvert_exporter": "python",
159
+ "pygments_lexer": "ipython3",
160
+ "version": "3.10.15"
161
+ }
162
+ },
163
+ "nbformat": 4,
164
+ "nbformat_minor": 2
165
+ }
community_contributions/1_lab1_gemini.ipynb ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
42
+ " </span>\n",
43
+ " </td>\n",
44
+ " </tr>\n",
45
+ "</table>"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "metadata": {},
51
+ "source": [
52
+ "### And please do remember to contact me if I can help\n",
53
+ "\n",
54
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
55
+ "\n",
56
+ "\n",
57
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
58
+ "\n",
59
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
60
+ "- Open extensions (View >> extensions)\n",
61
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
62
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
63
+ "Then View >> Explorer to bring back the File Explorer.\n",
64
+ "\n",
65
+ "And then:\n",
66
+ "1. Run `uv add google-genai` to install the Google Gemini library. (If you had started your environment before running this command, you will need to restart your environment in the Jupyter notebook.)\n",
67
+ "2. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
68
+ "3. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
69
+ "4. Enjoy!\n",
70
+ "\n",
71
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
72
+ "1. From the Cursor menu, choose Settings >> VSCode Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
73
+ "2. In the Settings search bar, type \"venv\" \n",
74
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
75
+ "And then try again.\n",
76
+ "\n",
77
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
78
+ "`conda deactivate` \n",
79
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
80
+ "`conda config --set auto_activate_base false` \n",
81
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": null,
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "# First let's do an import\n",
91
+ "from dotenv import load_dotenv\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "# Next it's time to load the API keys into environment variables\n",
101
+ "\n",
102
+ "load_dotenv(override=True)"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": null,
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": [
111
+ "# Check the keys\n",
112
+ "\n",
113
+ "import os\n",
114
+ "gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
115
+ "\n",
116
+ "if gemini_api_key:\n",
117
+ " print(f\"Gemini API Key exists and begins {gemini_api_key[:8]}\")\n",
118
+ "else:\n",
119
+ " print(\"Gemini API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
120
+ " \n"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "# And now - the all important import statement\n",
130
+ "# If you get an import error - head over to troubleshooting guide\n",
131
+ "\n",
132
+ "from google import genai"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "# And now we'll create an instance of the Gemini GenAI class\n",
142
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
143
+ "# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
144
+ "\n",
145
+ "client = genai.Client(api_key=gemini_api_key)"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": null,
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "# Create a list of messages in the familiar Gemini GenAI format\n",
155
+ "\n",
156
+ "messages = [\"What is 2+2?\"]"
157
+ ]
158
+ },
159
+ {
160
+ "cell_type": "code",
161
+ "execution_count": null,
162
+ "metadata": {},
163
+ "outputs": [],
164
+ "source": [
165
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
166
+ "\n",
167
+ "response = client.models.generate_content(\n",
168
+ " model=\"gemini-2.0-flash\", contents=messages\n",
169
+ ")\n",
170
+ "\n",
171
+ "print(response.text)\n"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "code",
176
+ "execution_count": null,
177
+ "metadata": {},
178
+ "outputs": [],
179
+ "source": [
180
+ "\n",
181
+ "# Lets no create a challenging question\n",
182
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
183
+ "\n",
184
+ "# Ask the the model\n",
185
+ "response = client.models.generate_content(\n",
186
+ " model=\"gemini-2.0-flash\", contents=question\n",
187
+ ")\n",
188
+ "\n",
189
+ "question = response.text\n",
190
+ "\n",
191
+ "print(question)\n"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": null,
197
+ "metadata": {},
198
+ "outputs": [],
199
+ "source": [
200
+ "# Ask the models generated question to the model\n",
201
+ "response = client.models.generate_content(\n",
202
+ " model=\"gemini-2.0-flash\", contents=question\n",
203
+ ")\n",
204
+ "\n",
205
+ "# Extract the answer from the response\n",
206
+ "answer = response.text\n",
207
+ "\n",
208
+ "# Debug log the answer\n",
209
+ "print(answer)\n"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "metadata": {},
216
+ "outputs": [],
217
+ "source": [
218
+ "from IPython.display import Markdown, display\n",
219
+ "\n",
220
+ "# Nicely format the answer using Markdown\n",
221
+ "display(Markdown(answer))\n",
222
+ "\n"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "markdown",
227
+ "metadata": {},
228
+ "source": [
229
+ "# Congratulations!\n",
230
+ "\n",
231
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
232
+ "\n",
233
+ "Next time things get more interesting..."
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "markdown",
238
+ "metadata": {},
239
+ "source": [
240
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
241
+ " <tr>\n",
242
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
243
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
244
+ " </td>\n",
245
+ " <td>\n",
246
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
247
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
248
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
249
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
250
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
251
+ " </span>\n",
252
+ " </td>\n",
253
+ " </tr>\n",
254
+ "</table>"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "# First create the messages:\n",
264
+ "\n",
265
+ "\n",
266
+ "messages = [\"Something here\"]\n",
267
+ "\n",
268
+ "# Then make the first call:\n",
269
+ "\n",
270
+ "response =\n",
271
+ "\n",
272
+ "# Then read the business idea:\n",
273
+ "\n",
274
+ "business_idea = response.\n",
275
+ "\n",
276
+ "# And repeat!"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "markdown",
281
+ "metadata": {},
282
+ "source": []
283
+ }
284
+ ],
285
+ "metadata": {
286
+ "kernelspec": {
287
+ "display_name": ".venv",
288
+ "language": "python",
289
+ "name": "python3"
290
+ },
291
+ "language_info": {
292
+ "codemirror_mode": {
293
+ "name": "ipython",
294
+ "version": 3
295
+ },
296
+ "file_extension": ".py",
297
+ "mimetype": "text/x-python",
298
+ "name": "python",
299
+ "nbconvert_exporter": "python",
300
+ "pygments_lexer": "ipython3",
301
+ "version": "3.12.10"
302
+ }
303
+ },
304
+ "nbformat": 4,
305
+ "nbformat_minor": 2
306
+ }
community_contributions/1_lab1_groq_llama.ipynb ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# First Agentic AI workflow with Groq and Llama-3.3 LLM(Free of cost) "
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 1,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "# First let's do an import\n",
17
+ "from dotenv import load_dotenv"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": [
26
+ "# Next it's time to load the API keys into environment variables\n",
27
+ "\n",
28
+ "load_dotenv(override=True)"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "# Check the Groq API key\n",
38
+ "\n",
39
+ "import os\n",
40
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
41
+ "\n",
42
+ "if groq_api_key:\n",
43
+ " print(f\"GROQ API Key exists and begins {groq_api_key[:8]}\")\n",
44
+ "else:\n",
45
+ " print(\"GROQ API Key not set\")\n",
46
+ " \n"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 4,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "# And now - the all important import statement\n",
56
+ "# If you get an import error - head over to troubleshooting guide\n",
57
+ "\n",
58
+ "from groq import Groq"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": 5,
64
+ "metadata": {},
65
+ "outputs": [],
66
+ "source": [
67
+ "# Create a Groq instance\n",
68
+ "groq = Groq()"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": 6,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "# Create a list of messages in the familiar Groq format\n",
78
+ "\n",
79
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "code",
84
+ "execution_count": null,
85
+ "metadata": {},
86
+ "outputs": [],
87
+ "source": [
88
+ "# And now call it!\n",
89
+ "\n",
90
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
91
+ "print(response.choices[0].message.content)\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": []
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": 8,
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "# And now - let's ask for a question:\n",
108
+ "\n",
109
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
110
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "# ask it\n",
120
+ "response = groq.chat.completions.create(\n",
121
+ " model=\"llama-3.3-70b-versatile\",\n",
122
+ " messages=messages\n",
123
+ ")\n",
124
+ "\n",
125
+ "question = response.choices[0].message.content\n",
126
+ "\n",
127
+ "print(question)\n"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": 10,
133
+ "metadata": {},
134
+ "outputs": [],
135
+ "source": [
136
+ "# form a new messages list\n",
137
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": null,
143
+ "metadata": {},
144
+ "outputs": [],
145
+ "source": [
146
+ "# Ask it again\n",
147
+ "\n",
148
+ "response = groq.chat.completions.create(\n",
149
+ " model=\"llama-3.3-70b-versatile\",\n",
150
+ " messages=messages\n",
151
+ ")\n",
152
+ "\n",
153
+ "answer = response.choices[0].message.content\n",
154
+ "print(answer)\n"
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": null,
160
+ "metadata": {},
161
+ "outputs": [],
162
+ "source": [
163
+ "from IPython.display import Markdown, display\n",
164
+ "\n",
165
+ "display(Markdown(answer))\n",
166
+ "\n"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "markdown",
171
+ "metadata": {},
172
+ "source": [
173
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
174
+ " <tr>\n",
175
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
176
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
177
+ " </td>\n",
178
+ " <td>\n",
179
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
180
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
181
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
182
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
183
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
184
+ " </span>\n",
185
+ " </td>\n",
186
+ " </tr>\n",
187
+ "</table>"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": 17,
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "# First create the messages:\n",
197
+ "\n",
198
+ "messages = [{\"role\": \"user\", \"content\": \"Give me a business area that might be ripe for an Agentic AI solution.\"}]\n",
199
+ "\n",
200
+ "# Then make the first call:\n",
201
+ "\n",
202
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
203
+ "\n",
204
+ "# Then read the business idea:\n",
205
+ "\n",
206
+ "business_idea = response.choices[0].message.content\n",
207
+ "\n",
208
+ "\n",
209
+ "# And repeat!"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "metadata": {},
216
+ "outputs": [],
217
+ "source": [
218
+ "\n",
219
+ "display(Markdown(business_idea))"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": 19,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": [
228
+ "# Update the message with the business idea from previous step\n",
229
+ "messages = [{\"role\": \"user\", \"content\": \"What is the pain point in the business area of \" + business_idea + \"?\"}]"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "code",
234
+ "execution_count": 20,
235
+ "metadata": {},
236
+ "outputs": [],
237
+ "source": [
238
+ "# Make the second call\n",
239
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
240
+ "# Read the pain point\n",
241
+ "pain_point = response.choices[0].message.content\n"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "display(Markdown(pain_point))\n"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "code",
255
+ "execution_count": null,
256
+ "metadata": {},
257
+ "outputs": [],
258
+ "source": [
259
+ "# Make the third call\n",
260
+ "messages = [{\"role\": \"user\", \"content\": \"What is the Agentic AI solution for the pain point of \" + pain_point + \"?\"}]\n",
261
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
262
+ "# Read the agentic solution\n",
263
+ "agentic_solution = response.choices[0].message.content\n",
264
+ "display(Markdown(agentic_solution))"
265
+ ]
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "execution_count": null,
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": []
273
+ }
274
+ ],
275
+ "metadata": {
276
+ "kernelspec": {
277
+ "display_name": ".venv",
278
+ "language": "python",
279
+ "name": "python3"
280
+ },
281
+ "language_info": {
282
+ "codemirror_mode": {
283
+ "name": "ipython",
284
+ "version": 3
285
+ },
286
+ "file_extension": ".py",
287
+ "mimetype": "text/x-python",
288
+ "name": "python",
289
+ "nbconvert_exporter": "python",
290
+ "pygments_lexer": "ipython3",
291
+ "version": "3.12.10"
292
+ }
293
+ },
294
+ "nbformat": 4,
295
+ "nbformat_minor": 2
296
+ }
community_contributions/1_lab1_open_router.ipynb ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
42
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
43
+ " </span>\n",
44
+ " </td>\n",
45
+ " </tr>\n",
46
+ "</table>"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "markdown",
51
+ "metadata": {},
52
+ "source": [
53
+ "### And please do remember to contact me if I can help\n",
54
+ "\n",
55
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
56
+ "\n",
57
+ "\n",
58
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
59
+ "\n",
60
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
61
+ "- Open extensions (View >> extensions)\n",
62
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
63
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
64
+ "Then View >> Explorer to bring back the File Explorer.\n",
65
+ "\n",
66
+ "And then:\n",
67
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
68
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
69
+ "3. Enjoy!\n",
70
+ "\n",
71
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
72
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
73
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
74
+ "2. In the Settings search bar, type \"venv\" \n",
75
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
76
+ "And then try again.\n",
77
+ "\n",
78
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
79
+ "`conda deactivate` \n",
80
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
81
+ "`conda config --set auto_activate_base false` \n",
82
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": 76,
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "# First let's do an import\n",
92
+ "from dotenv import load_dotenv\n"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "# Next it's time to load the API keys into environment variables\n",
102
+ "\n",
103
+ "load_dotenv(override=True)"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "# Check the keys\n",
113
+ "\n",
114
+ "import os\n",
115
+ "open_router_api_key = os.getenv('OPEN_ROUTER_API_KEY')\n",
116
+ "\n",
117
+ "if open_router_api_key:\n",
118
+ " print(f\"Open router API Key exists and begins {open_router_api_key[:8]}\")\n",
119
+ "else:\n",
120
+ " print(\"Open router API Key not set - please head to the troubleshooting guide in the setup folder\")\n"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": 79,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "from openai import OpenAI"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": 80,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "# Initialize the client to point at OpenRouter instead of OpenAI\n",
139
+ "# You can use the exact same OpenAI Python package—just swap the base_url!\n",
140
+ "client = OpenAI(\n",
141
+ " base_url=\"https://openrouter.ai/api/v1\",\n",
142
+ " api_key=open_router_api_key\n",
143
+ ")"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": 81,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "client = OpenAI(\n",
162
+ " base_url=\"https://openrouter.ai/api/v1\",\n",
163
+ " api_key=open_router_api_key\n",
164
+ ")\n",
165
+ "\n",
166
+ "resp = client.chat.completions.create(\n",
167
+ " # Select a model from https://openrouter.ai/models and provide the model name here\n",
168
+ " model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
169
+ " messages=messages\n",
170
+ ")\n",
171
+ "print(resp.choices[0].message.content)"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "code",
176
+ "execution_count": 83,
177
+ "metadata": {},
178
+ "outputs": [],
179
+ "source": [
180
+ "# And now - let's ask for a question:\n",
181
+ "\n",
182
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
183
+ "messages = [{\"role\": \"user\", \"content\": question}]"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "code",
188
+ "execution_count": null,
189
+ "metadata": {},
190
+ "outputs": [],
191
+ "source": [
192
+ "response = client.chat.completions.create(\n",
193
+ " model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
194
+ " messages=messages\n",
195
+ ")\n",
196
+ "\n",
197
+ "question = response.choices[0].message.content\n",
198
+ "\n",
199
+ "print(question)"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": 85,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "# form a new messages list\n",
209
+ "\n",
210
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "# Ask it again\n",
220
+ "\n",
221
+ "response = client.chat.completions.create(\n",
222
+ " model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
223
+ " messages=messages\n",
224
+ ")\n",
225
+ "\n",
226
+ "answer = response.choices[0].message.content\n",
227
+ "print(answer)"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "code",
232
+ "execution_count": null,
233
+ "metadata": {},
234
+ "outputs": [],
235
+ "source": [
236
+ "from IPython.display import Markdown, display\n",
237
+ "\n",
238
+ "display(Markdown(answer))\n",
239
+ "\n"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "markdown",
244
+ "metadata": {},
245
+ "source": [
246
+ "# Congratulations!\n",
247
+ "\n",
248
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
249
+ "\n",
250
+ "Next time things get more interesting..."
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "markdown",
255
+ "metadata": {},
256
+ "source": [
257
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
258
+ " <tr>\n",
259
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
260
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
261
+ " </td>\n",
262
+ " <td>\n",
263
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
264
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
265
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
266
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
267
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
268
+ " </span>\n",
269
+ " </td>\n",
270
+ " </tr>\n",
271
+ "</table>"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "# First create the messages:\n",
281
+ "\n",
282
+ "\n",
283
+ "messages = [\"Something here\"]\n",
284
+ "\n",
285
+ "# Then make the first call:\n",
286
+ "\n",
287
+ "response =\n",
288
+ "\n",
289
+ "# Then read the business idea:\n",
290
+ "\n",
291
+ "business_idea = response.\n",
292
+ "\n",
293
+ "# And repeat!"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "markdown",
298
+ "metadata": {},
299
+ "source": []
300
+ }
301
+ ],
302
+ "metadata": {
303
+ "kernelspec": {
304
+ "display_name": ".venv",
305
+ "language": "python",
306
+ "name": "python3"
307
+ },
308
+ "language_info": {
309
+ "codemirror_mode": {
310
+ "name": "ipython",
311
+ "version": 3
312
+ },
313
+ "file_extension": ".py",
314
+ "mimetype": "text/x-python",
315
+ "name": "python",
316
+ "nbconvert_exporter": "python",
317
+ "pygments_lexer": "ipython3",
318
+ "version": "3.12.7"
319
+ }
320
+ },
321
+ "nbformat": 4,
322
+ "nbformat_minor": 2
323
+ }
community_contributions/2_lab2_exercise.ipynb ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# From Judging to Synthesizing — Evolving Multi-Agent Patterns\n",
8
+ "\n",
9
+ "In the original 2_lab2.ipynb, we explored a powerful agentic design pattern: sending the same question to multiple large language models (LLMs), then using a separate “judge” agent to evaluate and rank their responses. This approach is valuable for identifying the single best answer among many, leveraging the strengths of ensemble reasoning and critical evaluation.\n",
10
+ "\n",
11
+ "However, selecting just one “winner” can leave valuable insights from other models untapped. To address this, I am shifting to a new agentic pattern in this notebook: the synthesizer/improver pattern. Instead of merely ranking responses, we will prompt a dedicated LLM to review all answers, extract the most compelling ideas from each, and synthesize them into a single, improved response. \n",
12
+ "\n",
13
+ "This approach aims to combine the collective intelligence of multiple models, producing an answer that is richer, more nuanced, and more robust than any individual response.\n"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 1,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "import os\n",
23
+ "import json\n",
24
+ "from dotenv import load_dotenv\n",
25
+ "from openai import OpenAI\n",
26
+ "from anthropic import Anthropic\n",
27
+ "from IPython.display import Markdown, display"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "load_dotenv(override=True)"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "# Print the key prefixes to help with any debugging\n",
46
+ "\n",
47
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
48
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
49
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
50
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
51
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
52
+ "\n",
53
+ "if openai_api_key:\n",
54
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
55
+ "else:\n",
56
+ " print(\"OpenAI API Key not set\")\n",
57
+ " \n",
58
+ "if anthropic_api_key:\n",
59
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
60
+ "else:\n",
61
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
62
+ "\n",
63
+ "if google_api_key:\n",
64
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
65
+ "else:\n",
66
+ " print(\"Google API Key not set (and this is optional)\")\n",
67
+ "\n",
68
+ "if deepseek_api_key:\n",
69
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
70
+ "else:\n",
71
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
72
+ "\n",
73
+ "if groq_api_key:\n",
74
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
75
+ "else:\n",
76
+ " print(\"Groq API Key not set (and this is optional)\")"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": 7,
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their collective intelligence. \"\n",
86
+ "request += \"Answer only with the question, no explanation.\"\n",
87
+ "messages = [{\"role\": \"user\", \"content\": request}]"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "messages"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "openai = OpenAI()\n",
106
+ "response = openai.chat.completions.create(\n",
107
+ " model=\"gpt-4o-mini\",\n",
108
+ " messages=messages,\n",
109
+ ")\n",
110
+ "question = response.choices[0].message.content\n",
111
+ "print(question)\n"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": 10,
117
+ "metadata": {},
118
+ "outputs": [],
119
+ "source": [
120
+ "teammates = []\n",
121
+ "answers = []\n",
122
+ "messages = [{\"role\": \"user\", \"content\": question}]"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": null,
128
+ "metadata": {},
129
+ "outputs": [],
130
+ "source": [
131
+ "# The API we know well\n",
132
+ "\n",
133
+ "model_name = \"gpt-4o-mini\"\n",
134
+ "\n",
135
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
136
+ "answer = response.choices[0].message.content\n",
137
+ "\n",
138
+ "display(Markdown(answer))\n",
139
+ "teammates.append(model_name)\n",
140
+ "answers.append(answer)"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": null,
146
+ "metadata": {},
147
+ "outputs": [],
148
+ "source": [
149
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
150
+ "\n",
151
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
152
+ "\n",
153
+ "claude = Anthropic()\n",
154
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
155
+ "answer = response.content[0].text\n",
156
+ "\n",
157
+ "display(Markdown(answer))\n",
158
+ "teammates.append(model_name)\n",
159
+ "answers.append(answer)"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
169
+ "model_name = \"gemini-2.0-flash\"\n",
170
+ "\n",
171
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
172
+ "answer = response.choices[0].message.content\n",
173
+ "\n",
174
+ "display(Markdown(answer))\n",
175
+ "teammates.append(model_name)\n",
176
+ "answers.append(answer)"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
186
+ "model_name = \"deepseek-chat\"\n",
187
+ "\n",
188
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
189
+ "answer = response.choices[0].message.content\n",
190
+ "\n",
191
+ "display(Markdown(answer))\n",
192
+ "teammates.append(model_name)\n",
193
+ "answers.append(answer)"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
203
+ "model_name = \"llama-3.3-70b-versatile\"\n",
204
+ "\n",
205
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
206
+ "answer = response.choices[0].message.content\n",
207
+ "\n",
208
+ "display(Markdown(answer))\n",
209
+ "teammates.append(model_name)\n",
210
+ "answers.append(answer)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "# So where are we?\n",
220
+ "\n",
221
+ "print(teammates)\n",
222
+ "print(answers)"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "code",
227
+ "execution_count": null,
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "# It's nice to know how to use \"zip\"\n",
232
+ "for teammate, answer in zip(teammates, answers):\n",
233
+ " print(f\"Teammate: {teammate}\\n\\n{answer}\")"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": 23,
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": [
242
+ "# Let's bring this together - note the use of \"enumerate\"\n",
243
+ "\n",
244
+ "together = \"\"\n",
245
+ "for index, answer in enumerate(answers):\n",
246
+ " together += f\"# Response from teammate {index+1}\\n\\n\"\n",
247
+ " together += answer + \"\\n\\n\""
248
+ ]
249
+ },
250
+ {
251
+ "cell_type": "code",
252
+ "execution_count": null,
253
+ "metadata": {},
254
+ "outputs": [],
255
+ "source": [
256
+ "print(together)"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": 36,
262
+ "metadata": {},
263
+ "outputs": [],
264
+ "source": [
265
+ "formatter = f\"\"\"You are taking the nost interesting ideas fron {len(teammates)} teammates.\n",
266
+ "Each model has been given this question:\n",
267
+ "\n",
268
+ "{question}\n",
269
+ "\n",
270
+ "Your job is to evaluate each response for clarity and strength of argument, select the most relevant ideas and make a report, including a title, subtitles to separate sections, and quoting the LLM providing the idea.\n",
271
+ "From that, you will create a new improved answer.\"\"\""
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "print(formatter)"
281
+ ]
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": 38,
286
+ "metadata": {},
287
+ "outputs": [],
288
+ "source": [
289
+ "formatter_messages = [{\"role\": \"user\", \"content\": formatter}]"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": null,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "openai = OpenAI()\n",
299
+ "response = openai.chat.completions.create(\n",
300
+ " model=\"o3-mini\",\n",
301
+ " messages=formatter_messages,\n",
302
+ ")\n",
303
+ "results = response.choices[0].message.content\n",
304
+ "display(Markdown(results))"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": null,
310
+ "metadata": {},
311
+ "outputs": [],
312
+ "source": []
313
+ }
314
+ ],
315
+ "metadata": {
316
+ "kernelspec": {
317
+ "display_name": ".venv",
318
+ "language": "python",
319
+ "name": "python3"
320
+ },
321
+ "language_info": {
322
+ "codemirror_mode": {
323
+ "name": "ipython",
324
+ "version": 3
325
+ },
326
+ "file_extension": ".py",
327
+ "mimetype": "text/x-python",
328
+ "name": "python",
329
+ "nbconvert_exporter": "python",
330
+ "pygments_lexer": "ipython3",
331
+ "version": "3.12.7"
332
+ }
333
+ },
334
+ "nbformat": 4,
335
+ "nbformat_minor": 2
336
+ }
community_contributions/2_lab2_six-thinking-hats-simulator.ipynb ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Six Thinking Hats Simulator\n",
8
+ "\n",
9
+ "## Objective\n",
10
+ "This notebook implements a simulator of the Six Thinking Hats technique to evaluate and improve technological solutions. The simulator will:\n",
11
+ "\n",
12
+ "1. Use an LLM to generate an initial technological solution idea for a specific daily task in a company.\n",
13
+ "2. Apply the Six Thinking Hats methodology to analyze and improve the proposed solution.\n",
14
+ "3. Provide a comprehensive evaluation from different perspectives.\n",
15
+ "\n",
16
+ "## About the Six Thinking Hats Technique\n",
17
+ "\n",
18
+ "The Six Thinking Hats is a powerful technique developed by Edward de Bono that helps people look at problems and decisions from different perspectives. Each \"hat\" represents a different thinking approach:\n",
19
+ "\n",
20
+ "- **White Hat (Facts):** Focuses on available information, facts, and data.\n",
21
+ "- **Red Hat (Feelings):** Represents emotions, intuition, and gut feelings.\n",
22
+ "- **Black Hat (Critical):** Identifies potential problems, risks, and negative aspects.\n",
23
+ "- **Yellow Hat (Positive):** Looks for benefits, opportunities, and positive aspects.\n",
24
+ "- **Green Hat (Creative):** Encourages new ideas, alternatives, and possibilities.\n",
25
+ "- **Blue Hat (Process):** Manages the thinking process and ensures all perspectives are considered.\n",
26
+ "\n",
27
+ "In this simulator, we'll use these different perspectives to thoroughly evaluate and improve technological solutions proposed by an LLM."
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 1,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "import os\n",
37
+ "import json\n",
38
+ "from dotenv import load_dotenv\n",
39
+ "from openai import OpenAI\n",
40
+ "from anthropic import Anthropic\n",
41
+ "from IPython.display import Markdown, display"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "load_dotenv(override=True)"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "metadata": {},
57
+ "outputs": [],
58
+ "source": [
59
+ "# Print the key prefixes to help with any debugging\n",
60
+ "\n",
61
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
62
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
63
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
64
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
65
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
66
+ "\n",
67
+ "if openai_api_key:\n",
68
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
69
+ "else:\n",
70
+ " print(\"OpenAI API Key not set\")\n",
71
+ " \n",
72
+ "if anthropic_api_key:\n",
73
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
74
+ "else:\n",
75
+ " print(\"Anthropic API Key not set\")\n",
76
+ "\n",
77
+ "if google_api_key:\n",
78
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
79
+ "else:\n",
80
+ " print(\"Google API Key not set\")\n",
81
+ "\n",
82
+ "if deepseek_api_key:\n",
83
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
84
+ "else:\n",
85
+ " print(\"DeepSeek API Key not set\")\n",
86
+ "\n",
87
+ "if groq_api_key:\n",
88
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
89
+ "else:\n",
90
+ " print(\"Groq API Key not set\")"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "request = \"Generate a technological solution to solve a specific workplace challenge. Choose an employee role, in a specific industry, and identify a time-consuming or error-prone daily task they face. Then, create an innovative yet practical technological solution that addresses this challenge. Include what technologies it uses (AI, automation, etc.), how it integrates with existing systems, its key benefits, and basic implementation requirements. Keep your solution realistic with current technology. \"\n",
100
+ "request += \"Answer only with the question, no explanation.\"\n",
101
+ "messages = [{\"role\": \"user\", \"content\": request}]\n",
102
+ "\n",
103
+ "openai = OpenAI()\n",
104
+ "response = openai.chat.completions.create(\n",
105
+ " model=\"gpt-4o-mini\",\n",
106
+ " messages=messages,\n",
107
+ ")\n",
108
+ "question = response.choices[0].message.content\n",
109
+ "print(question)"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "validation_prompt = f\"\"\"Validate and improve the following technological solution. For each iteration, check if the solution meets these criteria:\n",
119
+ "\n",
120
+ "1. Clarity:\n",
121
+ " - Is the problem clearly defined?\n",
122
+ " - Is the solution clearly explained?\n",
123
+ " - Are the technical components well-described?\n",
124
+ "\n",
125
+ "2. Specificity:\n",
126
+ " - Are there specific examples or use cases?\n",
127
+ " - Are the technologies and tools specifically named?\n",
128
+ " - Are the implementation steps detailed?\n",
129
+ "\n",
130
+ "3. Context:\n",
131
+ " - Is the industry/company context clear?\n",
132
+ " - Are the user roles and needs well-defined?\n",
133
+ " - Is the current workflow/problem well-described?\n",
134
+ "\n",
135
+ "4. Constraints:\n",
136
+ " - Are there clear technical limitations?\n",
137
+ " - Are there budget/time constraints mentioned?\n",
138
+ " - Are there integration requirements specified?\n",
139
+ "\n",
140
+ "If any of these criteria are not met, improve the solution by:\n",
141
+ "1. Adding missing details\n",
142
+ "2. Clarifying ambiguous points\n",
143
+ "3. Providing more specific examples\n",
144
+ "4. Including relevant constraints\n",
145
+ "\n",
146
+ "Here is the technological solution to validate and improve:\n",
147
+ "{question} \n",
148
+ "Provide an improved version that addresses any missing or unclear aspects. If this is the 5th iteration, return the final improved version without further changes.\n",
149
+ "\n",
150
+ "Response only with the Improved Solution:\n",
151
+ "[Your improved solution here]\"\"\"\n",
152
+ "\n",
153
+ "messages = [{\"role\": \"user\", \"content\": validation_prompt}]\n",
154
+ "\n",
155
+ "response = openai.chat.completions.create(model=\"gpt-4o\", messages=messages)\n",
156
+ "question = response.choices[0].message.content\n",
157
+ "\n",
158
+ "display(Markdown(question))"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "markdown",
163
+ "metadata": {},
164
+ "source": [
165
+ "\n",
166
+ "In this section, we will ask each AI model to analyze a technological solution using the Six Thinking Hats methodology. Each model will:\n",
167
+ "\n",
168
+ "1. First generate a technological solution for a workplace challenge\n",
169
+ "2. Then analyze that solution using each of the Six Thinking Hats\n",
170
+ "\n",
171
+ "Each model will provide:\n",
172
+ "1. An initial technological solution\n",
173
+ "2. A structured analysis using all six thinking hats\n",
174
+ "3. A final recommendation based on the comprehensive analysis\n",
175
+ "\n",
176
+ "This approach will allow us to:\n",
177
+ "- Compare how different models apply the Six Thinking Hats methodology\n",
178
+ "- Identify patterns and differences in their analytical approaches\n",
179
+ "- Gather diverse perspectives on the same solution\n",
180
+ "- Create a rich, multi-faceted evaluation of each proposed technological solution\n",
181
+ "\n",
182
+ "The responses will be collected and displayed below, showing how each model applies the Six Thinking Hats methodology to evaluate and improve the proposed solutions."
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": 6,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": [
191
+ "models = []\n",
192
+ "answers = []\n",
193
+ "combined_question = f\" Analyze the technological solution prposed in {question} using the Six Thinking Hats methodology. For each hat, provide a detailed analysis. Finally, provide a comprehensive recommendation based on all the above analyses.\"\n",
194
+ "messages = [{\"role\": \"user\", \"content\": combined_question}]"
195
+ ]
196
+ },
197
+ {
198
+ "cell_type": "code",
199
+ "execution_count": null,
200
+ "metadata": {},
201
+ "outputs": [],
202
+ "source": [
203
+ "# GPT thinking process\n",
204
+ "\n",
205
+ "model_name = \"gpt-4o\"\n",
206
+ "\n",
207
+ "\n",
208
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
209
+ "answer = response.choices[0].message.content\n",
210
+ "\n",
211
+ "display(Markdown(answer))\n",
212
+ "models.append(model_name)\n",
213
+ "answers.append(answer)"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "# Claude thinking process\n",
223
+ "\n",
224
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
225
+ "\n",
226
+ "claude = Anthropic()\n",
227
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
228
+ "answer = response.content[0].text\n",
229
+ "\n",
230
+ "display(Markdown(answer))\n",
231
+ "models.append(model_name)\n",
232
+ "answers.append(answer)"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "code",
237
+ "execution_count": null,
238
+ "metadata": {},
239
+ "outputs": [],
240
+ "source": [
241
+ "# Gemini thinking process\n",
242
+ "\n",
243
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
244
+ "model_name = \"gemini-2.0-flash\"\n",
245
+ "\n",
246
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
247
+ "answer = response.choices[0].message.content\n",
248
+ "\n",
249
+ "display(Markdown(answer))\n",
250
+ "models.append(model_name)\n",
251
+ "answers.append(answer)"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {},
258
+ "outputs": [],
259
+ "source": [
260
+ "# Deepseek thinking process\n",
261
+ "\n",
262
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
263
+ "model_name = \"deepseek-chat\"\n",
264
+ "\n",
265
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
266
+ "answer = response.choices[0].message.content\n",
267
+ "\n",
268
+ "display(Markdown(answer))\n",
269
+ "models.append(model_name)\n",
270
+ "answers.append(answer)"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": null,
276
+ "metadata": {},
277
+ "outputs": [],
278
+ "source": [
279
+ "# Groq thinking process\n",
280
+ "\n",
281
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
282
+ "model_name = \"llama-3.3-70b-versatile\"\n",
283
+ "\n",
284
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
285
+ "answer = response.choices[0].message.content\n",
286
+ "\n",
287
+ "display(Markdown(answer))\n",
288
+ "models.append(model_name)\n",
289
+ "answers.append(answer)"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": null,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "!ollama pull llama3.2"
299
+ ]
300
+ },
301
+ {
302
+ "cell_type": "code",
303
+ "execution_count": null,
304
+ "metadata": {},
305
+ "outputs": [],
306
+ "source": [
307
+ "# Ollama thinking process\n",
308
+ "\n",
309
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
310
+ "model_name = \"llama3.2\"\n",
311
+ "\n",
312
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
313
+ "answer = response.choices[0].message.content\n",
314
+ "\n",
315
+ "display(Markdown(answer))\n",
316
+ "models.append(model_name)\n",
317
+ "answers.append(answer)"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": null,
323
+ "metadata": {},
324
+ "outputs": [],
325
+ "source": [
326
+ "for model, answer in zip(models, answers):\n",
327
+ " print(f\"Model: {model}\\n\\n{answer}\")"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "markdown",
332
+ "metadata": {},
333
+ "source": [
334
+ "## Next Step: Solution Synthesis and Enhancement\n",
335
+ "\n",
336
+ "**Best Recommendation Selection and Extended Solution Development**\n",
337
+ "\n",
338
+ "After applying the Six Thinking Hats analysis to evaluate the initial technological solution from multiple perspectives, the simulator will:\n",
339
+ "\n",
340
+ "1. **Synthesize Analysis Results**: Compile insights from all six thinking perspectives (White, Red, Black, Yellow, Green, and Blue hats) to identify the most compelling recommendations and improvements.\n",
341
+ "\n",
342
+ "2. **Select Optimal Recommendation**: Using a weighted evaluation system that considers feasibility, impact, and alignment with organizational goals, the simulator will identify and present the single best recommendation that emerged from the Six Thinking Hats analysis.\n",
343
+ "\n",
344
+ "3. **Generate Extended Solution**: Building upon the selected best recommendation, the simulator will create a comprehensive, enhanced version of the original technological solution that incorporates:\n",
345
+ " - Key insights from the critical analysis (Black Hat)\n",
346
+ " - Positive opportunities identified (Yellow Hat)\n",
347
+ " - Creative alternatives and innovations (Green Hat)\n",
348
+ " - Factual considerations and data requirements (White Hat)\n",
349
+ " - User experience and emotional factors (Red Hat)\n",
350
+ "\n",
351
+ "4. **Multi-Model Enhancement**: To further strengthen the solution, the simulator will leverage additional AI models or perspectives to provide supplementary recommendations that complement the Six Thinking Hats analysis, offering a more robust and well-rounded final technological solution.\n",
352
+ "\n",
353
+ "This step transforms the analytical insights into actionable improvements, delivering a refined solution that has been thoroughly evaluated and enhanced through structured critical thinking."
354
+ ]
355
+ },
356
+ {
357
+ "cell_type": "code",
358
+ "execution_count": 14,
359
+ "metadata": {},
360
+ "outputs": [],
361
+ "source": [
362
+ "together = \"\"\n",
363
+ "for index, answer in enumerate(answers):\n",
364
+ " together += f\"# Response from model {index+1}\\n\\n\"\n",
365
+ " together += answer + \"\\n\\n\""
366
+ ]
367
+ },
368
+ {
369
+ "cell_type": "code",
370
+ "execution_count": null,
371
+ "metadata": {},
372
+ "outputs": [],
373
+ "source": [
374
+ "from IPython.display import Markdown, display\n",
375
+ "import re\n",
376
+ "\n",
377
+ "print(f\"Each model has been given this technological solution to analyze: {question}\")\n",
378
+ "\n",
379
+ "# First, get the best individual response\n",
380
+ "judge_prompt = f\"\"\"\n",
381
+ " You are judging the quality of {len(models)} responses.\n",
382
+ " Evaluate each response based on:\n",
383
+ " 1. Clarity and coherence\n",
384
+ " 2. Depth of analysis\n",
385
+ " 3. Practicality of recommendations\n",
386
+ " 4. Originality of insights\n",
387
+ " \n",
388
+ " Rank the responses from best to worst.\n",
389
+ " Respond with the model index of the best response, nothing else.\n",
390
+ " \n",
391
+ " Here are the responses:\n",
392
+ " {answers}\n",
393
+ " \"\"\"\n",
394
+ " \n",
395
+ "# Get the best response\n",
396
+ "judge_response = openai.chat.completions.create(\n",
397
+ " model=\"o3-mini\",\n",
398
+ " messages=[{\"role\": \"user\", \"content\": judge_prompt}]\n",
399
+ ")\n",
400
+ "best_response = judge_response.choices[0].message.content\n",
401
+ "\n",
402
+ "print(f\"Best Response's Model: {models[int(best_response)]}\")\n",
403
+ "\n",
404
+ "synthesis_prompt = f\"\"\"\n",
405
+ " Here is the best response's model index from the judge:\n",
406
+ "\n",
407
+ " {best_response}\n",
408
+ "\n",
409
+ " And here are the responses from all the models:\n",
410
+ "\n",
411
+ " {together}\n",
412
+ "\n",
413
+ " Synthesize the responses from the non-best models into one comprehensive answer that:\n",
414
+ " 1. Captures the best insights from each response that could add value to the best response from the judge\n",
415
+ " 2. Resolves any contradictions between responses before extending the best response\n",
416
+ " 3. Presents a clear and coherent final answer that is a comprehensive extension of the best response from the judge\n",
417
+ " 4. Maintains the same format as the original best response from the judge\n",
418
+ " 5. Compiles all additional recommendations mentioned by all models\n",
419
+ "\n",
420
+ " Show the best response {answers[int(best_response)]} and then your synthesized response specifying which are additional recommendations to the best response:\n",
421
+ " \"\"\"\n",
422
+ "\n",
423
+ "# Get the synthesized response\n",
424
+ "synthesis_response = claude.messages.create(\n",
425
+ " model=\"claude-3-7-sonnet-latest\",\n",
426
+ " messages=[{\"role\": \"user\", \"content\": synthesis_prompt}],\n",
427
+ " max_tokens=10000\n",
428
+ ")\n",
429
+ "synthesized_answer = synthesis_response.content[0].text\n",
430
+ "\n",
431
+ "converted_answer = re.sub(r'\\\\[\\[\\]]', '$$', synthesized_answer)\n",
432
+ "display(Markdown(converted_answer))"
433
+ ]
434
+ }
435
+ ],
436
+ "metadata": {
437
+ "kernelspec": {
438
+ "display_name": ".venv",
439
+ "language": "python",
440
+ "name": "python3"
441
+ },
442
+ "language_info": {
443
+ "codemirror_mode": {
444
+ "name": "ipython",
445
+ "version": 3
446
+ },
447
+ "file_extension": ".py",
448
+ "mimetype": "text/x-python",
449
+ "name": "python",
450
+ "nbconvert_exporter": "python",
451
+ "pygments_lexer": "ipython3",
452
+ "version": "3.12.10"
453
+ }
454
+ },
455
+ "nbformat": 4,
456
+ "nbformat_minor": 2
457
+ }
community_contributions/3_lab3_groq_llama_generator_gemini_evaluator.ipynb ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Chat app with LinkedIn Profile Information - Groq LLama as Generator and Gemini as evaluator\n"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 58,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
17
+ "\n",
18
+ "from dotenv import load_dotenv\n",
19
+ "from openai import OpenAI\n",
20
+ "from pypdf import PdfReader\n",
21
+ "from groq import Groq\n",
22
+ "import gradio as gr"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 59,
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "load_dotenv(override=True)\n",
32
+ "groq = Groq()"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 60,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "reader = PdfReader(\"me/My_LinkedIn.pdf\")\n",
42
+ "linkedin = \"\"\n",
43
+ "for page in reader.pages:\n",
44
+ " text = page.extract_text()\n",
45
+ " if text:\n",
46
+ " linkedin += text"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "print(linkedin)"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 61,
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
65
+ " summary = f.read()"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 62,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "name = \"Maalaiappan Subramanian\""
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 63,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
84
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
85
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
86
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
87
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
88
+ "If you don't know the answer, say so.\"\n",
89
+ "\n",
90
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
91
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "system_prompt"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": 65,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "def chat(message, history):\n",
110
+ " # Below line is to remove the metadata and options from the history\n",
111
+ " history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
112
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
113
+ " response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
114
+ " return response.choices[0].message.content"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": 67,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "# Create a Pydantic model for the Evaluation\n",
133
+ "\n",
134
+ "from pydantic import BaseModel\n",
135
+ "\n",
136
+ "class Evaluation(BaseModel):\n",
137
+ " is_acceptable: bool\n",
138
+ " feedback: str\n"
139
+ ]
140
+ },
141
+ {
142
+ "cell_type": "code",
143
+ "execution_count": 69,
144
+ "metadata": {},
145
+ "outputs": [],
146
+ "source": [
147
+ "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
148
+ "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
149
+ "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
150
+ "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
151
+ "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
152
+ "\n",
153
+ "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
154
+ "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": 70,
160
+ "metadata": {},
161
+ "outputs": [],
162
+ "source": [
163
+ "def evaluator_user_prompt(reply, message, history):\n",
164
+ " user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
165
+ " user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
166
+ " user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
167
+ " user_prompt += f\"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
168
+ " return user_prompt"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": 71,
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "import os\n",
178
+ "gemini = OpenAI(\n",
179
+ " api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
180
+ " base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
181
+ ")"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": 72,
187
+ "metadata": {},
188
+ "outputs": [],
189
+ "source": [
190
+ "def evaluate(reply, message, history) -> Evaluation:\n",
191
+ "\n",
192
+ " messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
193
+ " response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
194
+ " return response.choices[0].message.parsed"
195
+ ]
196
+ },
197
+ {
198
+ "cell_type": "code",
199
+ "execution_count": 73,
200
+ "metadata": {},
201
+ "outputs": [],
202
+ "source": [
203
+ "def rerun(reply, message, history, feedback):\n",
204
+ " # Below line is to remove the metadata and options from the history\n",
205
+ " history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
206
+ " updated_system_prompt = system_prompt + f\"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
207
+ " updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
208
+ " updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
209
+ " messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
210
+ " response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
211
+ " return response.choices[0].message.content"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": 74,
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "def chat(message, history):\n",
221
+ " if \"personal\" in message:\n",
222
+ " system = system_prompt + \"\\n\\nEverything in your reply needs to be in Gen Z language - \\\n",
223
+ " it is mandatory that you respond only and entirely in Gen Z language\"\n",
224
+ " else:\n",
225
+ " system = system_prompt\n",
226
+ " # Below line is to remove the metadata and options from the history\n",
227
+ " history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
228
+ " messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
229
+ " response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
230
+ " reply =response.choices[0].message.content\n",
231
+ "\n",
232
+ " evaluation = evaluate(reply, message, history)\n",
233
+ " \n",
234
+ " if evaluation.is_acceptable:\n",
235
+ " print(\"Passed evaluation - returning reply\")\n",
236
+ " else:\n",
237
+ " print(\"Failed evaluation - retrying\")\n",
238
+ " print(evaluation.feedback)\n",
239
+ " reply = rerun(reply, message, history, evaluation.feedback) \n",
240
+ " return reply"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": null,
246
+ "metadata": {},
247
+ "outputs": [],
248
+ "source": [
249
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": []
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": []
263
+ }
264
+ ],
265
+ "metadata": {
266
+ "kernelspec": {
267
+ "display_name": ".venv",
268
+ "language": "python",
269
+ "name": "python3"
270
+ },
271
+ "language_info": {
272
+ "codemirror_mode": {
273
+ "name": "ipython",
274
+ "version": 3
275
+ },
276
+ "file_extension": ".py",
277
+ "mimetype": "text/x-python",
278
+ "name": "python",
279
+ "nbconvert_exporter": "python",
280
+ "pygments_lexer": "ipython3",
281
+ "version": "3.12.10"
282
+ }
283
+ },
284
+ "nbformat": 4,
285
+ "nbformat_minor": 2
286
+ }
community_contributions/Business_Idea.ipynb ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Business idea generator and evaluator \n",
8
+ "\n"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 1,
14
+ "metadata": {},
15
+ "outputs": [],
16
+ "source": [
17
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
18
+ "\n",
19
+ "import os\n",
20
+ "import json\n",
21
+ "from dotenv import load_dotenv\n",
22
+ "from openai import OpenAI\n",
23
+ "from anthropic import Anthropic\n",
24
+ "from IPython.display import Markdown, display"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": null,
30
+ "metadata": {},
31
+ "outputs": [],
32
+ "source": [
33
+ "# Always remember to do this!\n",
34
+ "load_dotenv(override=True)"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "# Print the key prefixes to help with any debugging\n",
44
+ "\n",
45
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
46
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
47
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
48
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
49
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
50
+ "\n",
51
+ "if openai_api_key:\n",
52
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
53
+ "else:\n",
54
+ " print(\"OpenAI API Key not set\")\n",
55
+ " \n",
56
+ "if anthropic_api_key:\n",
57
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
58
+ "else:\n",
59
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
60
+ "\n",
61
+ "if google_api_key:\n",
62
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
63
+ "else:\n",
64
+ " print(\"Google API Key not set (and this is optional)\")\n",
65
+ "\n",
66
+ "if deepseek_api_key:\n",
67
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
68
+ "else:\n",
69
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
70
+ "\n",
71
+ "if groq_api_key:\n",
72
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
73
+ "else:\n",
74
+ " print(\"Groq API Key not set (and this is optional)\")"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 4,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "request = (\n",
84
+ " \"Please generate three innovative business ideas aligned with the latest global trends. \"\n",
85
+ " \"For each idea, include a brief description (2–3 sentences).\"\n",
86
+ ")\n",
87
+ "messages = [{\"role\": \"user\", \"content\": request}]"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "messages"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "\n",
106
+ "openai = OpenAI()\n",
107
+ "'''\n",
108
+ "response = openai.chat.completions.create(\n",
109
+ " model=\"gpt-4o-mini\",\n",
110
+ " messages=messages,\n",
111
+ ")\n",
112
+ "question = response.choices[0].message.content\n",
113
+ "print(question)\n",
114
+ "'''"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 9,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "competitors = []\n",
124
+ "answers = []\n",
125
+ "#messages = [{\"role\": \"user\", \"content\": question}]"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "# The API we know well\n",
135
+ "\n",
136
+ "model_name = \"gpt-4o-mini\"\n",
137
+ "\n",
138
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
139
+ "answer = response.choices[0].message.content\n",
140
+ "\n",
141
+ "display(Markdown(answer))\n",
142
+ "competitors.append(model_name)\n",
143
+ "answers.append(answer)"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
153
+ "\n",
154
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
155
+ "\n",
156
+ "claude = Anthropic()\n",
157
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
158
+ "answer = response.content[0].text\n",
159
+ "\n",
160
+ "display(Markdown(answer))\n",
161
+ "competitors.append(model_name)\n",
162
+ "answers.append(answer)"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": [
171
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
172
+ "model_name = \"gemini-2.0-flash\"\n",
173
+ "\n",
174
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
175
+ "answer = response.choices[0].message.content\n",
176
+ "\n",
177
+ "display(Markdown(answer))\n",
178
+ "competitors.append(model_name)\n",
179
+ "answers.append(answer)"
180
+ ]
181
+ },
182
+ {
183
+ "cell_type": "code",
184
+ "execution_count": null,
185
+ "metadata": {},
186
+ "outputs": [],
187
+ "source": [
188
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
189
+ "model_name = \"deepseek-chat\"\n",
190
+ "\n",
191
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
192
+ "answer = response.choices[0].message.content\n",
193
+ "\n",
194
+ "display(Markdown(answer))\n",
195
+ "competitors.append(model_name)\n",
196
+ "answers.append(answer)"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
206
+ "model_name = \"llama-3.3-70b-versatile\"\n",
207
+ "\n",
208
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
209
+ "answer = response.choices[0].message.content\n",
210
+ "\n",
211
+ "display(Markdown(answer))\n",
212
+ "competitors.append(model_name)\n",
213
+ "answers.append(answer)\n"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "!ollama pull llama3.2"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "code",
227
+ "execution_count": null,
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
232
+ "model_name = \"llama3.2\"\n",
233
+ "\n",
234
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
235
+ "answer = response.choices[0].message.content\n",
236
+ "\n",
237
+ "display(Markdown(answer))\n",
238
+ "competitors.append(model_name)\n",
239
+ "answers.append(answer)"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": null,
245
+ "metadata": {},
246
+ "outputs": [],
247
+ "source": [
248
+ "# So where are we?\n",
249
+ "\n",
250
+ "print(competitors)\n",
251
+ "print(answers)\n"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {},
258
+ "outputs": [],
259
+ "source": [
260
+ "# It's nice to know how to use \"zip\"\n",
261
+ "for competitor, answer in zip(competitors, answers):\n",
262
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": 14,
268
+ "metadata": {},
269
+ "outputs": [],
270
+ "source": [
271
+ "# Let's bring this together - note the use of \"enumerate\"\n",
272
+ "\n",
273
+ "together = \"\"\n",
274
+ "for index, answer in enumerate(answers):\n",
275
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
276
+ " together += answer + \"\\n\\n\""
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "print(together)"
286
+ ]
287
+ },
288
+ {
289
+ "cell_type": "code",
290
+ "execution_count": null,
291
+ "metadata": {},
292
+ "outputs": [],
293
+ "source": [
294
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
295
+ "Each model was asked to generate three innovative business ideas aligned with the latest global trends.\n",
296
+ "\n",
297
+ "Your job is to evaluate the likelihood of success for each idea on a scale from 0 to 100 percent. For each competitor, list the three percentages in the same order as their ideas.\n",
298
+ "\n",
299
+ "Respond only with JSON in this format:\n",
300
+ "{{\"results\": [\n",
301
+ " {{\"competitor\": 1, \"success_chances\": [perc1, perc2, perc3]}},\n",
302
+ " {{\"competitor\": 2, \"success_chances\": [perc1, perc2, perc3]}},\n",
303
+ " ...\n",
304
+ "]}}\n",
305
+ "\n",
306
+ "Here are the ideas from each competitor:\n",
307
+ "\n",
308
+ "{together}\n",
309
+ "\n",
310
+ "Now respond with only the JSON, nothing else.\"\"\"\n"
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": null,
316
+ "metadata": {},
317
+ "outputs": [],
318
+ "source": [
319
+ "print(judge)"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": 18,
325
+ "metadata": {},
326
+ "outputs": [],
327
+ "source": [
328
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
329
+ ]
330
+ },
331
+ {
332
+ "cell_type": "code",
333
+ "execution_count": null,
334
+ "metadata": {},
335
+ "outputs": [],
336
+ "source": [
337
+ "# Judgement time!\n",
338
+ "\n",
339
+ "openai = OpenAI()\n",
340
+ "response = openai.chat.completions.create(\n",
341
+ " model=\"o3-mini\",\n",
342
+ " messages=judge_messages,\n",
343
+ ")\n",
344
+ "results = response.choices[0].message.content\n",
345
+ "print(results)\n"
346
+ ]
347
+ },
348
+ {
349
+ "cell_type": "code",
350
+ "execution_count": null,
351
+ "metadata": {},
352
+ "outputs": [],
353
+ "source": [
354
+ "# Parse judge results JSON and display success probabilities\n",
355
+ "results_dict = json.loads(results)\n",
356
+ "for entry in results_dict[\"results\"]:\n",
357
+ " comp_num = entry[\"competitor\"]\n",
358
+ " comp_name = competitors[comp_num - 1]\n",
359
+ " chances = entry[\"success_chances\"]\n",
360
+ " print(f\"{comp_name}:\")\n",
361
+ " for idx, perc in enumerate(chances, start=1):\n",
362
+ " print(f\" Idea {idx}: {perc}% chance of success\")\n",
363
+ " print()\n"
364
+ ]
365
+ }
366
+ ],
367
+ "metadata": {
368
+ "kernelspec": {
369
+ "display_name": ".venv",
370
+ "language": "python",
371
+ "name": "python3"
372
+ },
373
+ "language_info": {
374
+ "codemirror_mode": {
375
+ "name": "ipython",
376
+ "version": 3
377
+ },
378
+ "file_extension": ".py",
379
+ "mimetype": "text/x-python",
380
+ "name": "python",
381
+ "nbconvert_exporter": "python",
382
+ "pygments_lexer": "ipython3",
383
+ "version": "3.12.7"
384
+ }
385
+ },
386
+ "nbformat": 4,
387
+ "nbformat_minor": 2
388
+ }
community_contributions/Multi-Model-Resume–JD-Match-Analyzer/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .env
community_contributions/Multi-Model-Resume/342/200/223JD-Match-Analyzer/AnalyzeResume.png ADDED
community_contributions/Multi-Model-Resume–JD-Match-Analyzer/README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🧠 Resume-Job Match Application (LLM-Powered)
2
+
3
+ ![AnalyseResume](AnalyzeResume.png)
4
+
5
+ This is a **Streamlit-based web app** that evaluates how well a resume matches a job description using powerful Large Language Models (LLMs) such as:
6
+
7
+ - OpenAI GPT
8
+ - Anthropic Claude
9
+ - Google Gemini (Generative AI)
10
+ - Groq LLM
11
+ - DeepSeek LLM
12
+
13
+ The app takes a resume and job description as input files, sends them to these LLMs, and returns:
14
+
15
+ - ✅ Match percentage from each model
16
+ - 📊 A ranked table sorted by match %
17
+ - 📈 Average match percentage
18
+ - 🧠 Simple, responsive UI for instant feedback
19
+
20
+ ## 📂 Features
21
+
22
+ - Upload **any file type** for resume and job description (PDF, DOCX, TXT, etc.)
23
+ - Automatic extraction and cleaning of text
24
+ - Match results across multiple models in real time
25
+ - Table view with clean formatting
26
+ - Uses `.env` file for secure API key management
27
+
28
+ ## 🔐 Environment Setup (`.env`)
29
+
30
+ Create a `.env` file in the project root and add the following API keys:
31
+
32
+ ```env
33
+ OPENAI_API_KEY=your-openai-api-key
34
+ ANTHROPIC_API_KEY=your-anthropic-api-key
35
+ GOOGLE_API_KEY=your-google-api-key
36
+ GROQ_API_KEY=your-groq-api-key
37
+ DEEPSEEK_API_KEY=your-deepseek-api-key
38
+ ```
39
+
40
+ ## ▶️ Running the App
41
+ ### Launch the app using Streamlit:
42
+
43
+ streamlit run resume_agent.py
44
+
45
+ ### The app will open in your browser at:
46
+ 📍 http://localhost:8501
47
+
48
+
community_contributions/Multi-Model-Resume–JD-Match-Analyzer/multi_file_ingestion.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from langchain.document_loaders import (
3
+ TextLoader,
4
+ PyPDFLoader,
5
+ UnstructuredWordDocumentLoader,
6
+ UnstructuredFileLoader
7
+ )
8
+
9
+
10
+
11
+ def load_and_split_resume(file_path: str):
12
+ """
13
+ Loads a resume file and splits it into text chunks using LangChain.
14
+
15
+ Args:
16
+ file_path (str): Path to the resume file (.txt, .pdf, .docx, etc.)
17
+ chunk_size (int): Maximum characters per chunk.
18
+ chunk_overlap (int): Overlap between chunks to preserve context.
19
+
20
+ Returns:
21
+ List[str]: List of split text chunks.
22
+ """
23
+ if not os.path.exists(file_path):
24
+ raise FileNotFoundError(f"File not found: {file_path}")
25
+
26
+ ext = os.path.splitext(file_path)[1].lower()
27
+
28
+ # Select the appropriate loader
29
+ if ext == ".txt":
30
+ loader = TextLoader(file_path, encoding="utf-8")
31
+ elif ext == ".pdf":
32
+ loader = PyPDFLoader(file_path)
33
+ elif ext in [".docx", ".doc"]:
34
+ loader = UnstructuredWordDocumentLoader(file_path)
35
+ else:
36
+ # Fallback for other common formats
37
+ loader = UnstructuredFileLoader(file_path)
38
+
39
+ # Load the file as LangChain documents
40
+ documents = loader.load()
41
+
42
+
43
+ return documents
44
+ # return [doc.page_content for doc in split_docs]
community_contributions/Multi-Model-Resume–JD-Match-Analyzer/resume_agent.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from openai import OpenAI
4
+ from anthropic import Anthropic
5
+ import pdfplumber
6
+ from io import StringIO
7
+ from dotenv import load_dotenv
8
+ import pandas as pd
9
+ from multi_file_ingestion import load_and_split_resume
10
+
11
+ # Load environment variables
12
+ load_dotenv(override=True)
13
+ openai_api_key = os.getenv("OPENAI_API_KEY")
14
+ anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
15
+ google_api_key = os.getenv("GOOGLE_API_KEY")
16
+ groq_api_key = os.getenv("GROQ_API_KEY")
17
+ deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
18
+
19
+ openai = OpenAI()
20
+
21
+ # Streamlit UI
22
+ st.set_page_config(page_title="LLM Resume–JD Fit", layout="wide")
23
+ st.title("🧠 Multi-Model Resume–JD Match Analyzer")
24
+
25
+ # Inject custom CSS to reduce white space
26
+ st.markdown("""
27
+ <style>
28
+ .block-container {
29
+ padding-top: 3rem; /* instead of 1rem */
30
+ padding-bottom: 1rem;
31
+ }
32
+ .stMarkdown {
33
+ margin-bottom: 0.5rem;
34
+ }
35
+ .logo-container img {
36
+ width: 50px;
37
+ height: auto;
38
+ margin-right: 10px;
39
+ }
40
+ .header-row {
41
+ display: flex;
42
+ align-items: center;
43
+ gap: 1rem;
44
+ margin-top: 1rem; /* Add extra top margin here if needed */
45
+ }
46
+ </style>
47
+ """, unsafe_allow_html=True)
48
+
49
+ # File upload
50
+ resume_file = st.file_uploader("📄 Upload Resume (any file type)", type=None)
51
+ jd_file = st.file_uploader("📝 Upload Job Description (any file type)", type=None)
52
+
53
+ # Function to extract text from uploaded files
54
+ def extract_text(file):
55
+ if file.name.endswith(".pdf"):
56
+ with pdfplumber.open(file) as pdf:
57
+ return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
58
+ else:
59
+ return StringIO(file.read().decode("utf-8")).read()
60
+
61
+
62
+ def extract_candidate_name(resume_text):
63
+ prompt = f"""
64
+ You are an AI assistant specialized in resume analysis.
65
+
66
+ Your task is to get full name of the candidate from the resume.
67
+
68
+ Resume:
69
+ {resume_text}
70
+
71
+ Respond with only the candidate's full name.
72
+ """
73
+ try:
74
+ response = openai.chat.completions.create(
75
+ model="gpt-4o-mini",
76
+ messages=[
77
+ {"role": "system", "content": "You are a professional resume evaluator."},
78
+ {"role": "user", "content": prompt}
79
+ ]
80
+ )
81
+ content = response.choices[0].message.content
82
+
83
+ return content.strip()
84
+
85
+ except Exception as e:
86
+ return "Unknown"
87
+
88
+
89
+ # Function to build the prompt for LLMs
90
+ def build_prompt(resume_text, jd_text):
91
+ prompt = f"""
92
+ You are an AI assistant specialized in resume analysis and recruitment. Analyze the given resume and compare it with the job description.
93
+
94
+ Your task is to evaluate how well the resume aligns with the job description.
95
+
96
+
97
+ Provide a match percentage between 0 and 100, where 100 indicates a perfect fit.
98
+
99
+ Resume:
100
+ {resume_text}
101
+
102
+ Job Description:
103
+ {jd_text}
104
+
105
+ Respond with only the match percentage as an integer.
106
+ """
107
+ return prompt.strip()
108
+
109
+ # Function to get match percentage from OpenAI GPT-4
110
+ def get_openai_match(prompt):
111
+ try:
112
+ response = openai.chat.completions.create(
113
+ model="gpt-4o-mini",
114
+ messages=[
115
+ {"role": "system", "content": "You are a professional resume evaluator."},
116
+ {"role": "user", "content": prompt}
117
+ ]
118
+ )
119
+ content = response.choices[0].message.content
120
+ digits = ''.join(filter(str.isdigit, content))
121
+ return min(int(digits), 100) if digits else 0
122
+ except Exception as e:
123
+ st.error(f"OpenAI API Error: {e}")
124
+ return 0
125
+
126
+ # Function to get match percentage from Anthropic Claude
127
+ def get_anthropic_match(prompt):
128
+ try:
129
+ model_name = "claude-3-7-sonnet-latest"
130
+ claude = Anthropic()
131
+
132
+ message = claude.messages.create(
133
+ model=model_name,
134
+ max_tokens=100,
135
+ messages=[
136
+ {"role": "user", "content": prompt}
137
+ ]
138
+ )
139
+ content = message.content[0].text
140
+ digits = ''.join(filter(str.isdigit, content))
141
+ return min(int(digits), 100) if digits else 0
142
+ except Exception as e:
143
+ st.error(f"Anthropic API Error: {e}")
144
+ return 0
145
+
146
+ # Function to get match percentage from Google Gemini
147
+ def get_google_match(prompt):
148
+ try:
149
+ gemini = OpenAI(api_key=google_api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
150
+ model_name = "gemini-2.0-flash"
151
+ messages = [{"role": "user", "content": prompt}]
152
+ response = gemini.chat.completions.create(model=model_name, messages=messages)
153
+ content = response.choices[0].message.content
154
+ digits = ''.join(filter(str.isdigit, content))
155
+ return min(int(digits), 100) if digits else 0
156
+ except Exception as e:
157
+ st.error(f"Google Gemini API Error: {e}")
158
+ return 0
159
+
160
+ # Function to get match percentage from Groq
161
+ def get_groq_match(prompt):
162
+ try:
163
+ groq = OpenAI(api_key=groq_api_key, base_url="https://api.groq.com/openai/v1")
164
+ model_name = "llama-3.3-70b-versatile"
165
+ messages = [{"role": "user", "content": prompt}]
166
+ response = groq.chat.completions.create(model=model_name, messages=messages)
167
+ answer = response.choices[0].message.content
168
+ digits = ''.join(filter(str.isdigit, answer))
169
+ return min(int(digits), 100) if digits else 0
170
+ except Exception as e:
171
+ st.error(f"Groq API Error: {e}")
172
+ return 0
173
+
174
+ # Function to get match percentage from DeepSeek
175
+ def get_deepseek_match(prompt):
176
+ try:
177
+ deepseek = OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com/v1")
178
+ model_name = "deepseek-chat"
179
+ messages = [{"role": "user", "content": prompt}]
180
+ response = deepseek.chat.completions.create(model=model_name, messages=messages)
181
+ answer = response.choices[0].message.content
182
+ digits = ''.join(filter(str.isdigit, answer))
183
+ return min(int(digits), 100) if digits else 0
184
+ except Exception as e:
185
+ st.error(f"DeepSeek API Error: {e}")
186
+ return 0
187
+
188
+ # Main action
189
+ if st.button("🔍 Analyze Resume Fit"):
190
+ if resume_file and jd_file:
191
+ with st.spinner("Analyzing..."):
192
+ # resume_text = extract_text(resume_file)
193
+ # jd_text = extract_text(jd_file)
194
+ os.makedirs("temp_files", exist_ok=True)
195
+ resume_path = os.path.join("temp_files", resume_file.name)
196
+
197
+ with open(resume_path, "wb") as f:
198
+ f.write(resume_file.getbuffer())
199
+ resume_docs = load_and_split_resume(resume_path)
200
+ resume_text = "\n".join([doc.page_content for doc in resume_docs])
201
+
202
+ jd_path = os.path.join("temp_files", jd_file.name)
203
+ with open(jd_path, "wb") as f:
204
+ f.write(jd_file.getbuffer())
205
+ jd_docs = load_and_split_resume(jd_path)
206
+ jd_text = "\n".join([doc.page_content for doc in jd_docs])
207
+
208
+ candidate_name = extract_candidate_name(resume_text)
209
+ prompt = build_prompt(resume_text, jd_text)
210
+
211
+ # Get match percentages from all models
212
+ scores = {
213
+ "OpenAI GPT-4o Mini": get_openai_match(prompt),
214
+ "Anthropic Claude": get_anthropic_match(prompt),
215
+ "Google Gemini": get_google_match(prompt),
216
+ "Groq": get_groq_match(prompt),
217
+ "DeepSeek": get_deepseek_match(prompt),
218
+ }
219
+
220
+ # Calculate average score
221
+ average_score = round(sum(scores.values()) / len(scores), 2)
222
+
223
+ # Sort scores in descending order
224
+ sorted_scores = sorted(scores.items(), reverse=False)
225
+
226
+ # Display results
227
+ st.success("✅ Analysis Complete")
228
+ st.subheader("📊 Match Results (Ranked by Model)")
229
+
230
+ # Show candidate name
231
+ st.markdown(f"**👤 Candidate:** {candidate_name}")
232
+
233
+ # Create and sort dataframe
234
+ df = pd.DataFrame(sorted_scores, columns=["Model", "% Match"])
235
+ df = df.sort_values("% Match", ascending=False).reset_index(drop=True)
236
+
237
+ # Convert to HTML table
238
+ def render_custom_table(dataframe):
239
+ table_html = "<table style='border-collapse: collapse; width: auto;'>"
240
+ # Table header
241
+ table_html += "<thead><tr>"
242
+ for col in dataframe.columns:
243
+ table_html += f"<th style='text-align: center; padding: 8px; border-bottom: 1px solid #ddd;'>{col}</th>"
244
+ table_html += "</tr></thead>"
245
+
246
+ # Table rows
247
+ table_html += "<tbody>"
248
+ for _, row in dataframe.iterrows():
249
+ table_html += "<tr>"
250
+ for val in row:
251
+ table_html += f"<td style='text-align: left; padding: 8px; border-bottom: 1px solid #eee;'>{val}</td>"
252
+ table_html += "</tr>"
253
+ table_html += "</tbody></table>"
254
+ return table_html
255
+
256
+ # Display table
257
+ st.markdown(render_custom_table(df), unsafe_allow_html=True)
258
+
259
+ # Show average match
260
+ st.metric(label="📈 Average Match %", value=f"{average_score:.2f}%")
261
+ else:
262
+ st.warning("Please upload both resume and job description.")
community_contributions/app_rate_limiter_mailgun_integration.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ from openai import OpenAI
3
+ import json
4
+ import os
5
+ import requests
6
+ from pypdf import PdfReader
7
+ import gradio as gr
8
+ import base64
9
+ import time
10
+ from collections import defaultdict
11
+ import fastapi
12
+ from gradio.context import Context
13
+ import logging
14
+
15
+ logger = logging.getLogger(__name__)
16
+ logger.setLevel(logging.DEBUG)
17
+
18
+
19
+ load_dotenv(override=True)
20
+
21
+ class RateLimiter:
22
+ def __init__(self, max_requests=5, time_window=5):
23
+ # max_requests per time_window seconds
24
+ self.max_requests = max_requests
25
+ self.time_window = time_window # in seconds
26
+ self.request_history = defaultdict(list)
27
+
28
+ def is_rate_limited(self, user_id):
29
+ current_time = time.time()
30
+ # Remove old requests
31
+ self.request_history[user_id] = [
32
+ timestamp for timestamp in self.request_history[user_id]
33
+ if current_time - timestamp < self.time_window
34
+ ]
35
+
36
+ # Check if user has exceeded the limit
37
+ if len(self.request_history[user_id]) >= self.max_requests:
38
+ return True
39
+
40
+ # Add current request
41
+ self.request_history[user_id].append(current_time)
42
+ return False
43
+
44
+ def push(text):
45
+ requests.post(
46
+ "https://api.pushover.net/1/messages.json",
47
+ data={
48
+ "token": os.getenv("PUSHOVER_TOKEN"),
49
+ "user": os.getenv("PUSHOVER_USER"),
50
+ "message": text,
51
+ }
52
+ )
53
+
54
+ def send_email(from_email, name, notes):
55
+ auth = base64.b64encode(f'api:{os.getenv("MAILGUN_API_KEY")}'.encode()).decode()
56
+
57
+ response = requests.post(
58
+ f'https://api.mailgun.net/v3/{os.getenv("MAILGUN_DOMAIN")}/messages',
59
+ headers={
60
+ 'Authorization': f'Basic {auth}'
61
+ },
62
+ data={
63
+ 'from': f'Website Contact <mailgun@{os.getenv("MAILGUN_DOMAIN")}>',
64
+ 'to': os.getenv("MAILGUN_RECIPIENT"),
65
+ 'subject': f'New message from {from_email}',
66
+ 'text': f'Name: {name}\nEmail: {from_email}\nNotes: {notes}',
67
+ 'h:Reply-To': from_email
68
+ }
69
+ )
70
+
71
+ return response.status_code == 200
72
+
73
+
74
+ def record_user_details(email, name="Name not provided", notes="not provided"):
75
+ push(f"Recording {name} with email {email} and notes {notes}")
76
+ # Send email notification
77
+ email_sent = send_email(email, name, notes)
78
+ return {"recorded": "ok", "email_sent": email_sent}
79
+
80
+ def record_unknown_question(question):
81
+ push(f"Recording {question}")
82
+ return {"recorded": "ok"}
83
+
84
+ record_user_details_json = {
85
+ "name": "record_user_details",
86
+ "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
87
+ "parameters": {
88
+ "type": "object",
89
+ "properties": {
90
+ "email": {
91
+ "type": "string",
92
+ "description": "The email address of this user"
93
+ },
94
+ "name": {
95
+ "type": "string",
96
+ "description": "The user's name, if they provided it"
97
+ }
98
+ ,
99
+ "notes": {
100
+ "type": "string",
101
+ "description": "Any additional information about the conversation that's worth recording to give context"
102
+ }
103
+ },
104
+ "required": ["email"],
105
+ "additionalProperties": False
106
+ }
107
+ }
108
+
109
+ record_unknown_question_json = {
110
+ "name": "record_unknown_question",
111
+ "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
112
+ "parameters": {
113
+ "type": "object",
114
+ "properties": {
115
+ "question": {
116
+ "type": "string",
117
+ "description": "The question that couldn't be answered"
118
+ },
119
+ },
120
+ "required": ["question"],
121
+ "additionalProperties": False
122
+ }
123
+ }
124
+
125
+ tools = [{"type": "function", "function": record_user_details_json},
126
+ {"type": "function", "function": record_unknown_question_json}]
127
+
128
+
129
+ class Me:
130
+
131
+ def __init__(self):
132
+ self.openai = OpenAI(api_key=os.getenv("GOOGLE_API_KEY"), base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
133
+ self.name = "Sagarnil Das"
134
+ self.rate_limiter = RateLimiter(max_requests=5, time_window=60) # 5 messages per minute
135
+ reader = PdfReader("me/linkedin.pdf")
136
+ self.linkedin = ""
137
+ for page in reader.pages:
138
+ text = page.extract_text()
139
+ if text:
140
+ self.linkedin += text
141
+ with open("me/summary.txt", "r", encoding="utf-8") as f:
142
+ self.summary = f.read()
143
+
144
+
145
+ def handle_tool_call(self, tool_calls):
146
+ results = []
147
+ for tool_call in tool_calls:
148
+ tool_name = tool_call.function.name
149
+ arguments = json.loads(tool_call.function.arguments)
150
+ print(f"Tool called: {tool_name}", flush=True)
151
+ tool = globals().get(tool_name)
152
+ result = tool(**arguments) if tool else {}
153
+ results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
154
+ return results
155
+
156
+ def system_prompt(self):
157
+ system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
158
+ particularly questions related to {self.name}'s career, background, skills and experience. \
159
+ Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
160
+ You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
161
+ Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
162
+ If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
163
+ If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \
164
+ When a user provides their email, both a push notification and an email notification will be sent. If the user does not provide any note in the message \
165
+ in which they provide their email, then give a summary of the conversation so far as the notes."
166
+
167
+ system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
168
+ system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
169
+ return system_prompt
170
+
171
+ def chat(self, message, history):
172
+ # Get the client IP from Gradio's request context
173
+ try:
174
+ # Try to get the real client IP from request headers
175
+ request = Context.get_context().request
176
+ # Check for X-Forwarded-For header (common in reverse proxies like HF Spaces)
177
+ forwarded_for = request.headers.get("X-Forwarded-For")
178
+ # Check for Cf-Connecting-IP header (Cloudflare)
179
+ cloudflare_ip = request.headers.get("Cf-Connecting-IP")
180
+
181
+ if forwarded_for:
182
+ # X-Forwarded-For contains a comma-separated list of IPs, the first one is the client
183
+ user_id = forwarded_for.split(",")[0].strip()
184
+ elif cloudflare_ip:
185
+ user_id = cloudflare_ip
186
+ else:
187
+ # Fall back to direct client address
188
+ user_id = request.client.host
189
+ except (AttributeError, RuntimeError, fastapi.exceptions.FastAPIError):
190
+ # Fallback if we can't get context or if running outside of FastAPI
191
+ user_id = "default_user"
192
+ logger.debug(f"User ID: {user_id}")
193
+ if self.rate_limiter.is_rate_limited(user_id):
194
+ return "You're sending messages too quickly. Please wait a moment before sending another message."
195
+
196
+ messages = [{"role": "system", "content": self.system_prompt()}]
197
+
198
+ # Check if history is a list of dicts (Gradio "messages" format)
199
+ if isinstance(history, list) and all(isinstance(h, dict) for h in history):
200
+ messages.extend(history)
201
+ else:
202
+ # Assume it's a list of [user_msg, assistant_msg] pairs
203
+ for user_msg, assistant_msg in history:
204
+ messages.append({"role": "user", "content": user_msg})
205
+ messages.append({"role": "assistant", "content": assistant_msg})
206
+
207
+ messages.append({"role": "user", "content": message})
208
+
209
+ done = False
210
+ while not done:
211
+ response = self.openai.chat.completions.create(
212
+ model="gemini-2.0-flash",
213
+ messages=messages,
214
+ tools=tools
215
+ )
216
+ if response.choices[0].finish_reason == "tool_calls":
217
+ tool_calls = response.choices[0].message.tool_calls
218
+ tool_result = self.handle_tool_call(tool_calls)
219
+ messages.append(response.choices[0].message)
220
+ messages.extend(tool_result)
221
+ else:
222
+ done = True
223
+
224
+ return response.choices[0].message.content
225
+
226
+
227
+
228
+ if __name__ == "__main__":
229
+ me = Me()
230
+ gr.ChatInterface(me.chat, type="messages").launch()
231
+
community_contributions/community.ipynb ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Community contributions\n",
8
+ "\n",
9
+ "Thank you for considering contributing your work to the repo!\n",
10
+ "\n",
11
+ "Please add your code (modules or notebooks) to this directory and send me a PR, per the instructions in the guides.\n",
12
+ "\n",
13
+ "I'd love to share your progress with other students, so everyone can benefit from your projects.\n"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "markdown",
18
+ "metadata": {},
19
+ "source": []
20
+ }
21
+ ],
22
+ "metadata": {
23
+ "language_info": {
24
+ "name": "python"
25
+ }
26
+ },
27
+ "nbformat": 4,
28
+ "nbformat_minor": 2
29
+ }
community_contributions/llm-evaluator.ipynb ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "BASED ON Week 1 Day 3 LAB Exercise\n",
8
+ "\n",
9
+ "This program evaluates different LLM outputs who are acting as customer service representative and are replying to an irritated customer.\n",
10
+ "OpenAI 40 mini, Gemini, Deepseek, Groq and Ollama are customer service representatives who respond to the email and OpenAI 3o mini analyzes all the responses and ranks their output based on different parameters."
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": 1,
16
+ "metadata": {},
17
+ "outputs": [],
18
+ "source": [
19
+ "# Start with imports -\n",
20
+ "import os\n",
21
+ "import json\n",
22
+ "from dotenv import load_dotenv\n",
23
+ "from openai import OpenAI\n",
24
+ "from anthropic import Anthropic\n",
25
+ "from IPython.display import Markdown, display"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {},
32
+ "outputs": [],
33
+ "source": [
34
+ "# Always remember to do this!\n",
35
+ "load_dotenv(override=True)"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": null,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "# Print the key prefixes to help with any debugging\n",
45
+ "\n",
46
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
47
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
48
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
49
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
50
+ "\n",
51
+ "if openai_api_key:\n",
52
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
53
+ "else:\n",
54
+ " print(\"OpenAI API Key not set\")\n",
55
+ "\n",
56
+ "if google_api_key:\n",
57
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
58
+ "else:\n",
59
+ " print(\"Google API Key not set (and this is optional)\")\n",
60
+ "\n",
61
+ "if deepseek_api_key:\n",
62
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
63
+ "else:\n",
64
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
65
+ "\n",
66
+ "if groq_api_key:\n",
67
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
68
+ "else:\n",
69
+ " print(\"Groq API Key not set (and this is optional)\")"
70
+ ]
71
+ },
72
+ {
73
+ "cell_type": "code",
74
+ "execution_count": 4,
75
+ "metadata": {},
76
+ "outputs": [],
77
+ "source": [
78
+ "persona = \"You are a customer support representative for a subscription bases software product.\"\n",
79
+ "email_content = '''Subject: Totally unacceptable experience\n",
80
+ "\n",
81
+ "Hi,\n",
82
+ "\n",
83
+ "I’ve already written to you twice about this, and still no response. I was charged again this month even after canceling my subscription. This is the third time this has happened.\n",
84
+ "\n",
85
+ "Honestly, I’m losing patience. If I don’t get a clear explanation and refund within 24 hours, I’m going to report this on social media and leave negative reviews.\n",
86
+ "\n",
87
+ "You’ve seriously messed up here. Fix this now.\n",
88
+ "\n",
89
+ "– Jordan\n",
90
+ "\n",
91
+ "'''"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": 5,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "messages = [{\"role\":\"system\", \"content\": persona}]"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "request = f\"\"\"A frustrated customer has written in about being repeatedly charged after canceling and threatened to escalate on social media.\n",
110
+ "Write a calm, empathetic, and professional response that Acknowledges their frustration, Apologizes sincerely,Explains the next steps to resolve the issue\n",
111
+ "Attempts to de-escalate the situation. Keep the tone respectful and proactive. Do not make excuses or blame the customer.\"\"\"\n",
112
+ "request += f\" Here is the email : {email_content}]\"\n",
113
+ "messages.append({\"role\": \"user\", \"content\": request})\n",
114
+ "print(messages)"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "messages"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": 8,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "competitors = []\n",
133
+ "answers = []\n",
134
+ "messages = [{\"role\": \"user\", \"content\": request}]"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "# The API we know well\n",
144
+ "openai = OpenAI()\n",
145
+ "model_name = \"gpt-4o-mini\"\n",
146
+ "\n",
147
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
148
+ "answer = response.choices[0].message.content\n",
149
+ "\n",
150
+ "display(Markdown(answer))\n",
151
+ "competitors.append(model_name)\n",
152
+ "answers.append(answer)"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
162
+ "model_name = \"gemini-2.0-flash\"\n",
163
+ "\n",
164
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
165
+ "answer = response.choices[0].message.content\n",
166
+ "\n",
167
+ "display(Markdown(answer))\n",
168
+ "competitors.append(model_name)\n",
169
+ "answers.append(answer)"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": null,
175
+ "metadata": {},
176
+ "outputs": [],
177
+ "source": [
178
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
179
+ "model_name = \"deepseek-chat\"\n",
180
+ "\n",
181
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
182
+ "answer = response.choices[0].message.content\n",
183
+ "\n",
184
+ "display(Markdown(answer))\n",
185
+ "competitors.append(model_name)\n",
186
+ "answers.append(answer)"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": null,
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
196
+ "model_name = \"llama-3.3-70b-versatile\"\n",
197
+ "\n",
198
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
199
+ "answer = response.choices[0].message.content\n",
200
+ "\n",
201
+ "display(Markdown(answer))\n",
202
+ "competitors.append(model_name)\n",
203
+ "answers.append(answer)\n"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "code",
208
+ "execution_count": null,
209
+ "metadata": {},
210
+ "outputs": [],
211
+ "source": [
212
+ "!ollama pull llama3.2"
213
+ ]
214
+ },
215
+ {
216
+ "cell_type": "code",
217
+ "execution_count": null,
218
+ "metadata": {},
219
+ "outputs": [],
220
+ "source": [
221
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
222
+ "model_name = \"llama3.2\"\n",
223
+ "\n",
224
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
225
+ "answer = response.choices[0].message.content\n",
226
+ "\n",
227
+ "display(Markdown(answer))\n",
228
+ "competitors.append(model_name)\n",
229
+ "answers.append(answer)"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "code",
234
+ "execution_count": null,
235
+ "metadata": {},
236
+ "outputs": [],
237
+ "source": [
238
+ "# So where are we?\n",
239
+ "\n",
240
+ "print(competitors)\n",
241
+ "print(answers)\n"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "# It's nice to know how to use \"zip\"\n",
251
+ "for competitor, answer in zip(competitors, answers):\n",
252
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
253
+ ]
254
+ },
255
+ {
256
+ "cell_type": "code",
257
+ "execution_count": 16,
258
+ "metadata": {},
259
+ "outputs": [],
260
+ "source": [
261
+ "# Let's bring this together - note the use of \"enumerate\"\n",
262
+ "\n",
263
+ "together = \"\"\n",
264
+ "for index, answer in enumerate(answers):\n",
265
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
266
+ " together += answer + \"\\n\\n\""
267
+ ]
268
+ },
269
+ {
270
+ "cell_type": "code",
271
+ "execution_count": null,
272
+ "metadata": {},
273
+ "outputs": [],
274
+ "source": [
275
+ "print(together)"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": 18,
281
+ "metadata": {},
282
+ "outputs": [],
283
+ "source": [
284
+ "judge = f\"\"\"You are judging the performance of {len(competitors)} who are customer service representatives in a SaaS based subscription model company.\n",
285
+ "Each has responded to below grievnace email from the customer:\n",
286
+ "\n",
287
+ "{request}\n",
288
+ "\n",
289
+ "Evaluate the following customer support reply based on these criteria. Assign a score from 1 (very poor) to 5 (excellent) for each:\n",
290
+ "\n",
291
+ "1. Empathy:\n",
292
+ "Does the message acknowledge the customer’s frustration appropriately and sincerely?\n",
293
+ "\n",
294
+ "2. De-escalation:\n",
295
+ "Does the response effectively calm the customer and reduce the likelihood of social media escalation?\n",
296
+ "\n",
297
+ "3. Clarity:\n",
298
+ "Is the explanation of next steps clear and specific (e.g., refund process, timeline)?\n",
299
+ "\n",
300
+ "4. Professional Tone:\n",
301
+ "Is the message respectful, calm, and free from defensiveness or blame?\n",
302
+ "\n",
303
+ "Provide a one-sentence explanation for each score and a final overall rating with justification.\n",
304
+ "\n",
305
+ "Here are the responses from each competitor:\n",
306
+ "\n",
307
+ "{together}\n",
308
+ "\n",
309
+ "Do not include markdown formatting or code blocks. Also create a table with 3 columnds at the end containing rank, name and one line reason for the rank\"\"\"\n"
310
+ ]
311
+ },
312
+ {
313
+ "cell_type": "code",
314
+ "execution_count": null,
315
+ "metadata": {},
316
+ "outputs": [],
317
+ "source": [
318
+ "print(judge)"
319
+ ]
320
+ },
321
+ {
322
+ "cell_type": "code",
323
+ "execution_count": 20,
324
+ "metadata": {},
325
+ "outputs": [],
326
+ "source": [
327
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]\n"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": null,
333
+ "metadata": {},
334
+ "outputs": [],
335
+ "source": [
336
+ "# Judgement time!\n",
337
+ "\n",
338
+ "openai = OpenAI()\n",
339
+ "response = openai.chat.completions.create(\n",
340
+ " model=\"o3-mini\",\n",
341
+ " messages=judge_messages,\n",
342
+ ")\n",
343
+ "results = response.choices[0].message.content\n",
344
+ "print(results)\n"
345
+ ]
346
+ },
347
+ {
348
+ "cell_type": "code",
349
+ "execution_count": null,
350
+ "metadata": {},
351
+ "outputs": [],
352
+ "source": [
353
+ "print(results)"
354
+ ]
355
+ },
356
+ {
357
+ "cell_type": "code",
358
+ "execution_count": null,
359
+ "metadata": {},
360
+ "outputs": [],
361
+ "source": []
362
+ }
363
+ ],
364
+ "metadata": {
365
+ "kernelspec": {
366
+ "display_name": ".venv",
367
+ "language": "python",
368
+ "name": "python3"
369
+ },
370
+ "language_info": {
371
+ "codemirror_mode": {
372
+ "name": "ipython",
373
+ "version": 3
374
+ },
375
+ "file_extension": ".py",
376
+ "mimetype": "text/x-python",
377
+ "name": "python",
378
+ "nbconvert_exporter": "python",
379
+ "pygments_lexer": "ipython3",
380
+ "version": "3.12.7"
381
+ }
382
+ },
383
+ "nbformat": 4,
384
+ "nbformat_minor": 2
385
+ }
community_contributions/my_1_lab1.ipynb ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
42
+ " </span>\n",
43
+ " </td>\n",
44
+ " </tr>\n",
45
+ "</table>"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "metadata": {},
51
+ "source": [
52
+ "### And please do remember to contact me if I can help\n",
53
+ "\n",
54
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
55
+ "\n",
56
+ "\n",
57
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
58
+ "\n",
59
+ "Otherwise:\n",
60
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice.\n",
61
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
62
+ "3. Enjoy!"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": 1,
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "# First let's do an import\n",
72
+ "from dotenv import load_dotenv\n"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "code",
77
+ "execution_count": null,
78
+ "metadata": {},
79
+ "outputs": [],
80
+ "source": [
81
+ "# Next it's time to load the API keys into environment variables\n",
82
+ "\n",
83
+ "load_dotenv(override=True)"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# Check the keys\n",
93
+ "\n",
94
+ "import os\n",
95
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
96
+ "\n",
97
+ "if openai_api_key:\n",
98
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
99
+ "else:\n",
100
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
101
+ " \n"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": 4,
107
+ "metadata": {},
108
+ "outputs": [],
109
+ "source": [
110
+ "# And now - the all important import statement\n",
111
+ "# If you get an import error - head over to troubleshooting guide\n",
112
+ "\n",
113
+ "from openai import OpenAI"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": 5,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "# And now we'll create an instance of the OpenAI class\n",
123
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
124
+ "# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
125
+ "\n",
126
+ "openai = OpenAI()"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": 6,
132
+ "metadata": {},
133
+ "outputs": [],
134
+ "source": [
135
+ "# Create a list of messages in the familiar OpenAI format\n",
136
+ "\n",
137
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": null,
143
+ "metadata": {},
144
+ "outputs": [],
145
+ "source": [
146
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
147
+ "\n",
148
+ "response = openai.chat.completions.create(\n",
149
+ " model=\"gpt-4o-mini\",\n",
150
+ " messages=messages\n",
151
+ ")\n",
152
+ "\n",
153
+ "print(response.choices[0].message.content)\n"
154
+ ]
155
+ },
156
+ {
157
+ "cell_type": "code",
158
+ "execution_count": null,
159
+ "metadata": {},
160
+ "outputs": [],
161
+ "source": []
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": 8,
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": [
169
+ "# And now - let's ask for a question:\n",
170
+ "\n",
171
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
172
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
173
+ ]
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": null,
178
+ "metadata": {},
179
+ "outputs": [],
180
+ "source": [
181
+ "# ask it\n",
182
+ "response = openai.chat.completions.create(\n",
183
+ " model=\"gpt-4o-mini\",\n",
184
+ " messages=messages\n",
185
+ ")\n",
186
+ "\n",
187
+ "question = response.choices[0].message.content\n",
188
+ "\n",
189
+ "print(question)\n"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": 10,
195
+ "metadata": {},
196
+ "outputs": [],
197
+ "source": [
198
+ "# form a new messages list\n",
199
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": null,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "# Ask it again\n",
209
+ "\n",
210
+ "response = openai.chat.completions.create(\n",
211
+ " model=\"gpt-4o-mini\",\n",
212
+ " messages=messages\n",
213
+ ")\n",
214
+ "\n",
215
+ "answer = response.choices[0].message.content\n",
216
+ "print(answer)\n"
217
+ ]
218
+ },
219
+ {
220
+ "cell_type": "code",
221
+ "execution_count": null,
222
+ "metadata": {},
223
+ "outputs": [],
224
+ "source": [
225
+ "from IPython.display import Markdown, display\n",
226
+ "\n",
227
+ "display(Markdown(answer))\n",
228
+ "\n"
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "markdown",
233
+ "metadata": {},
234
+ "source": [
235
+ "# Congratulations!\n",
236
+ "\n",
237
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
238
+ "\n",
239
+ "Next time things get more interesting..."
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "markdown",
244
+ "metadata": {},
245
+ "source": [
246
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
247
+ " <tr>\n",
248
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
249
+ " <img src=\"../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
250
+ " </td>\n",
251
+ " <td>\n",
252
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
253
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
254
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
255
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
256
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
257
+ " </span>\n",
258
+ " </td>\n",
259
+ " </tr>\n",
260
+ "</table>"
261
+ ]
262
+ },
263
+ {
264
+ "cell_type": "markdown",
265
+ "metadata": {},
266
+ "source": [
267
+ "```\n",
268
+ "# First create the messages:\n",
269
+ "\n",
270
+ "messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
271
+ "\n",
272
+ "# Then make the first call:\n",
273
+ "\n",
274
+ "response = openai.chat.completions.create(\n",
275
+ " model=\"gpt-4o-mini\",\n",
276
+ " messages=messages\n",
277
+ ")\n",
278
+ "\n",
279
+ "# Then read the business idea:\n",
280
+ "\n",
281
+ "business_idea = response.choices[0].message.content\n",
282
+ "\n",
283
+ "# print(business_idea) \n",
284
+ "\n",
285
+ "# And repeat!\n",
286
+ "```"
287
+ ]
288
+ },
289
+ {
290
+ "cell_type": "code",
291
+ "execution_count": null,
292
+ "metadata": {},
293
+ "outputs": [],
294
+ "source": [
295
+ "# First exercice : ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.\n",
296
+ "\n",
297
+ "# First create the messages:\n",
298
+ "query = \"Pick a business area that might be worth exploring for an Agentic AI opportunity.\"\n",
299
+ "messages = [{\"role\": \"user\", \"content\": query}]\n",
300
+ "\n",
301
+ "# Then make the first call:\n",
302
+ "\n",
303
+ "response = openai.chat.completions.create(\n",
304
+ " model=\"gpt-4o-mini\",\n",
305
+ " messages=messages\n",
306
+ ")\n",
307
+ "\n",
308
+ "# Then read the business idea:\n",
309
+ "\n",
310
+ "business_idea = response.choices[0].message.content\n",
311
+ "\n",
312
+ "# print(business_idea) \n",
313
+ "\n",
314
+ "# from IPython.display import Markdown, display\n",
315
+ "\n",
316
+ "display(Markdown(business_idea))\n",
317
+ "\n",
318
+ "# And repeat!"
319
+ ]
320
+ },
321
+ {
322
+ "cell_type": "code",
323
+ "execution_count": null,
324
+ "metadata": {},
325
+ "outputs": [],
326
+ "source": [
327
+ "# Second exercice: Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.\n",
328
+ "\n",
329
+ "# First create the messages:\n",
330
+ "\n",
331
+ "prompt = f\"Please present a pain-point in that industry, something challenging that might be ripe for an Agentic solution for it in that industry: {business_idea}\"\n",
332
+ "messages = [{\"role\": \"user\", \"content\": prompt}]\n",
333
+ "\n",
334
+ "# Then make the first call:\n",
335
+ "\n",
336
+ "response = openai.chat.completions.create(\n",
337
+ " model=\"gpt-4o-mini\",\n",
338
+ " messages=messages\n",
339
+ ")\n",
340
+ "\n",
341
+ "# Then read the business idea:\n",
342
+ "\n",
343
+ "painpoint = response.choices[0].message.content\n",
344
+ " \n",
345
+ "# print(painpoint) \n",
346
+ "display(Markdown(painpoint))\n",
347
+ "\n",
348
+ "# And repeat!"
349
+ ]
350
+ },
351
+ {
352
+ "cell_type": "code",
353
+ "execution_count": null,
354
+ "metadata": {},
355
+ "outputs": [],
356
+ "source": [
357
+ "# third exercice: Finally have 3 third LLM call propose the Agentic AI solution.\n",
358
+ "\n",
359
+ "# First create the messages:\n",
360
+ "\n",
361
+ "promptEx3 = f\"Please come up with a proposal for the Agentic AI solution to address this business painpoint: {painpoint}\"\n",
362
+ "messages = [{\"role\": \"user\", \"content\": promptEx3}]\n",
363
+ "\n",
364
+ "# Then make the first call:\n",
365
+ "\n",
366
+ "response = openai.chat.completions.create(\n",
367
+ " model=\"gpt-4o-mini\",\n",
368
+ " messages=messages\n",
369
+ ")\n",
370
+ "\n",
371
+ "# Then read the business idea:\n",
372
+ "\n",
373
+ "ex3_answer=response.choices[0].message.content\n",
374
+ "# print(painpoint) \n",
375
+ "display(Markdown(ex3_answer))"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "markdown",
380
+ "metadata": {},
381
+ "source": []
382
+ }
383
+ ],
384
+ "metadata": {
385
+ "kernelspec": {
386
+ "display_name": ".venv",
387
+ "language": "python",
388
+ "name": "python3"
389
+ },
390
+ "language_info": {
391
+ "codemirror_mode": {
392
+ "name": "ipython",
393
+ "version": 3
394
+ },
395
+ "file_extension": ".py",
396
+ "mimetype": "text/x-python",
397
+ "name": "python",
398
+ "nbconvert_exporter": "python",
399
+ "pygments_lexer": "ipython3",
400
+ "version": "3.12.3"
401
+ }
402
+ },
403
+ "nbformat": 4,
404
+ "nbformat_minor": 2
405
+ }
community_contributions/travel_planner_multicall_and_sythesizer.ipynb ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
10
+ "\n",
11
+ "import os\n",
12
+ "import json\n",
13
+ "from dotenv import load_dotenv\n",
14
+ "from openai import OpenAI\n",
15
+ "from anthropic import Anthropic\n",
16
+ "from IPython.display import Markdown, display"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {},
22
+ "source": [
23
+ "<b>Load and check your API keys</b>\n",
24
+ "</br>\n",
25
+ "<b>- - - - - - - - - - - - - - - -</b>"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {},
32
+ "outputs": [],
33
+ "source": [
34
+ "# Always remember to do this!\n",
35
+ "load_dotenv(override=True)\n",
36
+ "\n",
37
+ "# Function to check and display API key status\n",
38
+ "def check_api_key(key_name):\n",
39
+ " key = os.getenv(key_name)\n",
40
+ " \n",
41
+ " if key:\n",
42
+ " # Always show the first 7 characters of the key\n",
43
+ " print(f\"✓ {key_name} API Key exists and begins... ({key[:7]})\")\n",
44
+ " return True\n",
45
+ " else:\n",
46
+ " print(f\"⚠️ {key_name} API Key not set\")\n",
47
+ " return False\n",
48
+ "\n",
49
+ "# Check each API key (the function now returns True or False)\n",
50
+ "has_openai = check_api_key('OPENAI_API_KEY')\n",
51
+ "has_anthropic = check_api_key('ANTHROPIC_API_KEY')\n",
52
+ "has_google = check_api_key('GOOGLE_API_KEY')\n",
53
+ "has_deepseek = check_api_key('DEEPSEEK_API_KEY')\n",
54
+ "has_groq = check_api_key('GROQ_API_KEY')"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "markdown",
59
+ "metadata": {
60
+ "vscode": {
61
+ "languageId": "html"
62
+ }
63
+ },
64
+ "source": [
65
+ "<b>Input for travel planner</b></br>\n",
66
+ "Describe yourself, your travel companions, and the destination you plan to visit.\n",
67
+ "</br>\n",
68
+ "<b>- - - - - - - - - - - - - - - -</b>"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": 4,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "# Provide a description of you or your family. Age, interests, etc.\n",
78
+ "person_description = \"family with a 3 year-old\"\n",
79
+ "# Provide the name of the specific destination or attraction and country\n",
80
+ "destination = \"Belgium, Brussels\""
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "markdown",
85
+ "metadata": {},
86
+ "source": [
87
+ "<b>- - - - - - - - - - - - - - - -</b>"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 5,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "prompt = f\"\"\"\n",
97
+ "Given the following description of a person or family:\n",
98
+ "{person_description}\n",
99
+ "\n",
100
+ "And the requested travel destination or attraction:\n",
101
+ "{destination}\n",
102
+ "\n",
103
+ "Provide a concise response including:\n",
104
+ "\n",
105
+ "1. Fit rating (1-10) specifically for this person or family.\n",
106
+ "2. One compelling positive reason why this destination suits them.\n",
107
+ "3. One notable drawback they should consider before visiting.\n",
108
+ "4. One important additional aspect to consider related to this location.\n",
109
+ "5. Suggest a few additional places that might also be of interest to them that are very close to the destination.\n",
110
+ "\"\"\""
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "def run_prompt_on_available_models(prompt):\n",
120
+ " \"\"\"\n",
121
+ " Run a prompt on all available AI models based on API keys.\n",
122
+ " Continues processing even if some models fail.\n",
123
+ " \"\"\"\n",
124
+ " results = {}\n",
125
+ " api_response = [{\"role\": \"user\", \"content\": prompt}]\n",
126
+ " \n",
127
+ " # OpenAI\n",
128
+ " if check_api_key('OPENAI_API_KEY'):\n",
129
+ " try:\n",
130
+ " model_name = \"gpt-4o-mini\"\n",
131
+ " openai_client = OpenAI()\n",
132
+ " response = openai_client.chat.completions.create(model=model_name, messages=api_response)\n",
133
+ " results[model_name] = response.choices[0].message.content\n",
134
+ " print(f\"✓ Got response from {model_name}\")\n",
135
+ " except Exception as e:\n",
136
+ " print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
137
+ " # Continue with other models\n",
138
+ " \n",
139
+ " # Anthropic\n",
140
+ " if check_api_key('ANTHROPIC_API_KEY'):\n",
141
+ " try:\n",
142
+ " model_name = \"claude-3-7-sonnet-latest\"\n",
143
+ " # Create new client each time\n",
144
+ " claude = Anthropic()\n",
145
+ " \n",
146
+ " # Use messages directly \n",
147
+ " response = claude.messages.create(\n",
148
+ " model=model_name,\n",
149
+ " messages=[{\"role\": \"user\", \"content\": prompt}],\n",
150
+ " max_tokens=1000\n",
151
+ " )\n",
152
+ " results[model_name] = response.content[0].text\n",
153
+ " print(f\"✓ Got response from {model_name}\")\n",
154
+ " except Exception as e:\n",
155
+ " print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
156
+ " # Continue with other models\n",
157
+ " \n",
158
+ " # Google\n",
159
+ " if check_api_key('GOOGLE_API_KEY'):\n",
160
+ " try:\n",
161
+ " model_name = \"gemini-2.0-flash\"\n",
162
+ " google_api_key = os.getenv('GOOGLE_API_KEY')\n",
163
+ " gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
164
+ " response = gemini.chat.completions.create(model=model_name, messages=api_response)\n",
165
+ " results[model_name] = response.choices[0].message.content\n",
166
+ " print(f\"✓ Got response from {model_name}\")\n",
167
+ " except Exception as e:\n",
168
+ " print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
169
+ " # Continue with other models\n",
170
+ " \n",
171
+ " # DeepSeek\n",
172
+ " if check_api_key('DEEPSEEK_API_KEY'):\n",
173
+ " try:\n",
174
+ " model_name = \"deepseek-chat\"\n",
175
+ " deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
176
+ " deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
177
+ " response = deepseek.chat.completions.create(model=model_name, messages=api_response)\n",
178
+ " results[model_name] = response.choices[0].message.content\n",
179
+ " print(f\"✓ Got response from {model_name}\")\n",
180
+ " except Exception as e:\n",
181
+ " print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
182
+ " # Continue with other models\n",
183
+ " \n",
184
+ " # Groq\n",
185
+ " if check_api_key('GROQ_API_KEY'):\n",
186
+ " try:\n",
187
+ " model_name = \"llama-3.3-70b-versatile\"\n",
188
+ " groq_api_key = os.getenv('GROQ_API_KEY')\n",
189
+ " groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
190
+ " response = groq.chat.completions.create(model=model_name, messages=api_response)\n",
191
+ " results[model_name] = response.choices[0].message.content\n",
192
+ " print(f\"✓ Got response from {model_name}\")\n",
193
+ " except Exception as e:\n",
194
+ " print(f\"⚠️ Error with {model_name}: {str(e)}\")\n",
195
+ " # Continue with other models\n",
196
+ " \n",
197
+ " # Check if we got any responses\n",
198
+ " if not results:\n",
199
+ " print(\"⚠️ No models were able to provide a response\")\n",
200
+ " \n",
201
+ " return results\n",
202
+ "\n",
203
+ "# Get responses from all available models\n",
204
+ "model_responses = run_prompt_on_available_models(prompt)\n",
205
+ "\n",
206
+ "# Display the results\n",
207
+ "for model, answer in model_responses.items():\n",
208
+ " display(Markdown(f\"## Response from {model}\\n\\n{answer}\"))"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "markdown",
213
+ "metadata": {},
214
+ "source": [
215
+ "<b>Sythesize answers from all models into one</b>\n",
216
+ "</br>\n",
217
+ "<b>- - - - - - - - - - - - - - - -</b>"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": null,
223
+ "metadata": {},
224
+ "outputs": [],
225
+ "source": [
226
+ "# Create a synthesis prompt\n",
227
+ "synthesis_prompt = f\"\"\"\n",
228
+ "Here are the responses from different models:\n",
229
+ "\"\"\"\n",
230
+ "\n",
231
+ "# Add each model's response to the synthesis prompt without mentioning model names\n",
232
+ "for index, (model, response) in enumerate(model_responses.items()):\n",
233
+ " synthesis_prompt += f\"\\n--- Response {index+1} ---\\n{response}\\n\"\n",
234
+ "\n",
235
+ "synthesis_prompt += \"\"\"\n",
236
+ "Please synthesize these responses into one comprehensive answer that:\n",
237
+ "1. Captures the best insights from each response\n",
238
+ "2. Resolves any contradictions between responses\n",
239
+ "3. Presents a clear and coherent final answer\n",
240
+ "4. Maintains the same format as the original responses (numbered list format)\n",
241
+ "5.Compiles all additional places mentioned by all models \n",
242
+ "\n",
243
+ "Your synthesized response:\n",
244
+ "\"\"\"\n",
245
+ "\n",
246
+ "# Create the synthesis\n",
247
+ "if check_api_key('OPENAI_API_KEY'):\n",
248
+ " try:\n",
249
+ " openai_client = OpenAI()\n",
250
+ " synthesis_response = openai_client.chat.completions.create(\n",
251
+ " model=\"gpt-4o-mini\",\n",
252
+ " messages=[{\"role\": \"user\", \"content\": synthesis_prompt}]\n",
253
+ " )\n",
254
+ " synthesized_answer = synthesis_response.choices[0].message.content\n",
255
+ " print(\"✓ Successfully synthesized responses with gpt-4o-mini\")\n",
256
+ " \n",
257
+ " # Display the synthesized answer\n",
258
+ " display(Markdown(\"## Synthesized Answer\\n\\n\" + synthesized_answer))\n",
259
+ " except Exception as e:\n",
260
+ " print(f\"⚠️ Error synthesizing responses with gpt-4o-mini: {str(e)}\")\n",
261
+ "else:\n",
262
+ " print(\"⚠️ OpenAI API key not available, cannot synthesize responses\")"
263
+ ]
264
+ }
265
+ ],
266
+ "metadata": {
267
+ "kernelspec": {
268
+ "display_name": ".venv",
269
+ "language": "python",
270
+ "name": "python3"
271
+ },
272
+ "language_info": {
273
+ "codemirror_mode": {
274
+ "name": "ipython",
275
+ "version": 3
276
+ },
277
+ "file_extension": ".py",
278
+ "mimetype": "text/x-python",
279
+ "name": "python",
280
+ "nbconvert_exporter": "python",
281
+ "pygments_lexer": "ipython3",
282
+ "version": "3.12.10"
283
+ }
284
+ },
285
+ "nbformat": 4,
286
+ "nbformat_minor": 2
287
+ }
me/linkedin.pdf ADDED
Binary file (72.9 kB). View file
 
me/summary.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ My name is Shivam Bhosale. I'm a Master's student at USC's Viterbi School of Engineering enrolled in its Applied Data Science program. Before coming to USC, I worked at Adobe as a Software Developer. I'm originally from Pune, India.
2
+ I love to explore new places and opportunities that help me in my career.
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ requests
2
+ python-dotenv
3
+ gradio
4
+ pypdf
5
+ openai
6
+ openai-agents