Spaces:
Sleeping
Sleeping
import torch | |
def load_checkpoint(checkpoint_path, model, remove_prefix=True ,device='cpu', optimizer=None): | |
""" | |
Loads a model and optimizer state from a checkpoint file, removing '_orig_mod.' prefix if present. | |
Parameters: | |
- checkpoint_path (str): Path to the checkpoint file. | |
- model (torch.nn.Module): The model instance to load the state dict into. | |
- optimizer (torch.optim.Optimizer, optional): The optimizer instance to load the state dict into. | |
Returns: | |
- model (torch.nn.Module): The model with loaded state dict. | |
- optimizer (torch.optim.Optimizer, optional): The optimizer with loaded state dict (if provided). | |
- epoch (int): The epoch number saved in the checkpoint. | |
- train_loss (float): The training loss saved in the checkpoint. | |
- val_loss (float): The validation loss saved in the checkpoint (if available). | |
- bleu_score (float): The BLEU score saved in the checkpoint (if available). | |
- cider_score (float): The CIDEr score saved in the checkpoint (if available). | |
""" | |
# Load the checkpoint | |
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) | |
# Modify the state_dict to remove the `_orig_mod.` prefix, if it exists | |
new_state_dict = {} | |
for key, value in checkpoint['model_state_dict'].items(): | |
new_key = key.replace('_orig_mod.', '') # Remove the prefix if present | |
new_state_dict[new_key] = value | |
model.load_state_dict(new_state_dict) | |
if optimizer is not None: | |
optimizer.load_state_dict(checkpoint['optimizer_state_dict']) | |
epoch = checkpoint.get('epoch', None) | |
train_loss = checkpoint.get('train_loss', None) | |
val_loss = checkpoint.get('val_loss', None) | |
bleu_score = checkpoint.get('bleu_score', None) | |
cider_score = checkpoint.get('cider_score', None) | |
return model, optimizer, epoch, train_loss, val_loss, bleu_score, cider_score | |