ImgCap / utils.py
shredder-31's picture
Rename utils to utils.py
00e7036 verified
raw
history blame
1.91 kB
import torch
def load_checkpoint(checkpoint_path, model, remove_prefix=True ,device='cpu', optimizer=None):
"""
Loads a model and optimizer state from a checkpoint file, removing '_orig_mod.' prefix if present.
Parameters:
- checkpoint_path (str): Path to the checkpoint file.
- model (torch.nn.Module): The model instance to load the state dict into.
- optimizer (torch.optim.Optimizer, optional): The optimizer instance to load the state dict into.
Returns:
- model (torch.nn.Module): The model with loaded state dict.
- optimizer (torch.optim.Optimizer, optional): The optimizer with loaded state dict (if provided).
- epoch (int): The epoch number saved in the checkpoint.
- train_loss (float): The training loss saved in the checkpoint.
- val_loss (float): The validation loss saved in the checkpoint (if available).
- bleu_score (float): The BLEU score saved in the checkpoint (if available).
- cider_score (float): The CIDEr score saved in the checkpoint (if available).
"""
# Load the checkpoint
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
# Modify the state_dict to remove the `_orig_mod.` prefix, if it exists
new_state_dict = {}
for key, value in checkpoint['model_state_dict'].items():
new_key = key.replace('_orig_mod.', '') # Remove the prefix if present
new_state_dict[new_key] = value
model.load_state_dict(new_state_dict)
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint.get('epoch', None)
train_loss = checkpoint.get('train_loss', None)
val_loss = checkpoint.get('val_loss', None)
bleu_score = checkpoint.get('bleu_score', None)
cider_score = checkpoint.get('cider_score', None)
return model, optimizer, epoch, train_loss, val_loss, bleu_score, cider_score