|
from inference_sdk import InferenceHTTPClient |
|
from PIL import Image, ImageDraw, ImageFont, ImageEnhance |
|
import matplotlib.pyplot as plt |
|
import os |
|
import gradio as gr |
|
from collections import defaultdict |
|
API_KEY = os.getenv("ROBOFLOW_API_KEY") |
|
|
|
|
|
|
|
CLIENT = InferenceHTTPClient( |
|
api_url="https://detect.roboflow.com", |
|
api_key=API_KEY |
|
) |
|
|
|
|
|
MODEL_ID = "hvacsym/5" |
|
CONFIDENCE_THRESHOLD = 0.3 |
|
GRID_SIZE = (3, 3) |
|
|
|
|
|
RED = (255, 0, 0) |
|
GREEN = (0, 255, 0) |
|
WHITE = (255, 255, 255) |
|
BLACK = (0, 0, 0) |
|
|
|
|
|
try: |
|
font = ImageFont.truetype("arial.ttf", 14) |
|
except: |
|
font = ImageFont.load_default() |
|
|
|
def enhance_image(image): |
|
"""Enhance image by adjusting brightness and contrast.""" |
|
if image.mode != 'L': |
|
image = image.convert('L') |
|
brightness = ImageEnhance.Brightness(image) |
|
image = brightness.enhance(1.3) |
|
contrast = ImageEnhance.Contrast(image) |
|
image = contrast.enhance(1.2) |
|
return image.convert('RGB') |
|
|
|
def process_image(image_path): |
|
"""Processes an image by running inference and drawing bounding boxes.""" |
|
|
|
original_image = Image.open(image_path) |
|
original_image = enhance_image(original_image) |
|
width, height = original_image.size |
|
seg_w, seg_h = width // GRID_SIZE[1], height // GRID_SIZE[0] |
|
|
|
|
|
final_image = original_image.copy() |
|
draw_final = ImageDraw.Draw(final_image) |
|
total_counts = defaultdict(int) |
|
|
|
|
|
for row in range(GRID_SIZE[0]): |
|
for col in range(GRID_SIZE[1]): |
|
x1, y1 = col * seg_w, row * seg_h |
|
x2, y2 = (col + 1) * seg_w, (row + 1) * seg_h |
|
segment = original_image.crop((x1, y1, x2, y2)) |
|
segment_path = f"segment_{row}_{col}.png" |
|
segment.save(segment_path) |
|
|
|
|
|
result = CLIENT.infer(segment_path, model_id=MODEL_ID) |
|
|
|
|
|
filtered_predictions = [ |
|
pred for pred in result["predictions"] if pred["confidence"] * 100 >= CONFIDENCE_THRESHOLD |
|
] |
|
|
|
|
|
for obj in filtered_predictions: |
|
class_name = obj["class"] |
|
total_counts[class_name] += 1 |
|
x_min, y_min = x1 + obj["x"] - obj["width"] // 2, y1 + obj["y"] - obj["height"] // 2 |
|
x_max, y_max = x1 + obj["x"] + obj["width"] // 2, y1 + obj["y"] + obj["height"] // 2 |
|
|
|
|
|
draw_final.rectangle([x_min, y_min, x_max, y_max], outline=GREEN, width=2) |
|
|
|
|
|
text_size = draw_final.textbbox((0, 0), class_name, font=font) |
|
text_width = text_size[2] - text_size[0] |
|
text_height = text_size[3] - text_size[1] |
|
text_x = x_min |
|
text_y = y_min - text_height - 5 if y_min - text_height - 5 > 0 else y_max + 5 |
|
|
|
draw_final.rectangle([text_x, text_y, text_x + text_width + 6, text_y + text_height + 2], fill=BLACK) |
|
draw_final.text((text_x + 3, text_y), class_name, fill=WHITE, font=font) |
|
|
|
|
|
final_image_path = "processed_image.png" |
|
final_image.save(final_image_path) |
|
return final_image_path, total_counts |
|
|
|
def process_uploaded_image(image_path): |
|
"""Handles uploaded image and processes it.""" |
|
final_image_path, total_counts = process_image(image_path) |
|
count_text = "\n".join([f"{label}: {count}" for label, count in total_counts.items()]) |
|
return final_image_path, count_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_uploaded_image, |
|
inputs=gr.Image(type="filepath"), |
|
outputs=[gr.Image(type="filepath"), gr.Text()], |
|
title="HVAC Symbol Detector", |
|
description="Upload an HVAC blueprint image. The model will segment it, detect symbols, and return the final image with bounding boxes along with symbol counts." |
|
) |
|
|
|
iface.launch(debug=True, share=True) |