Spaces:
Sleeping
Sleeping
from flask import Flask, request, render_template, send_file | |
from inference_sdk import InferenceHTTPClient | |
from PIL import Image, ImageDraw, ImageFont, ImageEnhance | |
import os | |
from collections import defaultdict | |
app = Flask(__name__) | |
# Ensure the "static/processed" directory exists for output images | |
PROCESSED_DIR = "static/processed" | |
if not os.path.exists(PROCESSED_DIR): | |
os.makedirs(PROCESSED_DIR, exist_ok=True) | |
# Securely get API key from Hugging Face Secrets | |
API_KEY = os.getenv("ROBOFLOW_API_KEY") | |
# Initialize the Roboflow client | |
CLIENT = InferenceHTTPClient( | |
api_url="https://detect.roboflow.com", | |
api_key=API_KEY # Secure way to use API key | |
) | |
# Model settings | |
MODEL_ID = "hvacsym/5" | |
CONFIDENCE_THRESHOLD = 0.3 # Confidence threshold for filtering predictions | |
GRID_SIZE = (3, 3) # 3x3 segmentation | |
# Colors for bounding boxes | |
RED = (255, 0, 0) | |
GREEN = (0, 255, 0) | |
WHITE = (255, 255, 255) | |
BLACK = (0, 0, 0) | |
# Load font for labeling | |
try: | |
font = ImageFont.truetype("arial.ttf", 14) | |
except: | |
font = ImageFont.load_default() | |
def enhance_image(image): | |
"""Enhance image by adjusting brightness and contrast.""" | |
if image.mode != 'L': | |
image = image.convert('L') | |
brightness = ImageEnhance.Brightness(image) | |
image = brightness.enhance(1.3) | |
contrast = ImageEnhance.Contrast(image) | |
image = contrast.enhance(1.2) | |
return image.convert('RGB') # Convert back to RGB for colored boxes | |
def process_image(image_path): | |
"""Processes an image by running inference and drawing bounding boxes.""" | |
# Load and enhance the original image | |
original_image = Image.open(image_path) | |
original_image = enhance_image(original_image) | |
width, height = original_image.size | |
seg_w, seg_h = width // GRID_SIZE[1], height // GRID_SIZE[0] | |
# Create a copy of the full image to draw bounding boxes | |
final_image = original_image.copy() | |
draw_final = ImageDraw.Draw(final_image) | |
total_counts = defaultdict(int) | |
# Process each segment | |
for row in range(GRID_SIZE[0]): | |
for col in range(GRID_SIZE[1]): | |
x1, y1 = col * seg_w, row * seg_h | |
x2, y2 = (col + 1) * seg_w, (row + 1) * seg_h | |
segment = original_image.crop((x1, y1, x2, y2)) | |
segment_path = f"static/processed/segment_{row}_{col}.png" | |
segment.save(segment_path) | |
# Run inference on the segment | |
result = CLIENT.infer(segment_path, model_id=MODEL_ID) | |
# Filter predictions based on confidence | |
filtered_predictions = [ | |
pred for pred in result["predictions"] if pred["confidence"] * 100 >= CONFIDENCE_THRESHOLD | |
] | |
# Draw bounding boxes and count labels | |
for obj in filtered_predictions: | |
class_name = obj["class"] | |
total_counts[class_name] += 1 | |
x_min, y_min = x1 + obj["x"] - obj["width"] // 2, y1 + obj["y"] - obj["height"] // 2 | |
x_max, y_max = x1 + obj["x"] + obj["width"] // 2, y1 + obj["y"] + obj["height"] // 2 | |
# Draw bounding box | |
draw_final.rectangle([x_min, y_min, x_max, y_max], outline=GREEN, width=2) | |
# Draw extended label above the bounding box | |
text_size = draw_final.textbbox((0, 0), class_name, font=font) | |
text_width = text_size[2] - text_size[0] | |
text_height = text_size[3] - text_size[1] | |
text_x = x_min | |
text_y = y_min - text_height - 5 if y_min - text_height - 5 > 0 else y_max + 5 | |
draw_final.rectangle([text_x, text_y, text_x + text_width + 6, text_y + text_height + 2], fill=BLACK) | |
draw_final.text((text_x + 3, text_y), class_name, fill=WHITE, font=font) | |
# Save the final processed image | |
final_image_path = "static/processed/processed_image.png" | |
final_image.save(final_image_path) | |
return final_image_path, total_counts | |
def index(): | |
if request.method == "POST": | |
image_file = request.files["image"] | |
if image_file: | |
# Ensure static/processed directory exists | |
os.makedirs(PROCESSED_DIR, exist_ok=True) | |
image_path = os.path.join(PROCESSED_DIR, "uploaded_image.png") | |
image_file.save(image_path) | |
# Process image | |
final_image_path, total_counts = process_image(image_path) | |
return render_template("index.html", final_image=final_image_path, counts=total_counts) | |
return render_template("index.html", final_image=None, counts=None) | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860) | |