Spaces:
Sleeping
Sleeping
Shreyansh Khaitan
commited on
upload
Browse files- .DS_Store +0 -0
- Dockerfile +17 -0
- app.py +99 -0
- requirements.txt +3 -0
- static/style.css +31 -0
- templates/index.html +29 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use Python as the base image
|
2 |
+
FROM python:3.8
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the project files
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Expose port 7860
|
14 |
+
EXPOSE 7860
|
15 |
+
|
16 |
+
# Run the Flask app
|
17 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, render_template, send_file
|
2 |
+
from inference_sdk import InferenceHTTPClient
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
import os
|
5 |
+
from collections import defaultdict
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
|
9 |
+
# Securely get API key from Hugging Face Secrets
|
10 |
+
API_KEY = os.getenv("ROBOFLOW_API_KEY")
|
11 |
+
|
12 |
+
# Initialize the Roboflow client
|
13 |
+
CLIENT = InferenceHTTPClient(
|
14 |
+
api_url="https://detect.roboflow.com",
|
15 |
+
api_key=API_KEY
|
16 |
+
)
|
17 |
+
|
18 |
+
# Model settings
|
19 |
+
MODEL_ID = "hvacsym/5"
|
20 |
+
CONFIDENCE_THRESHOLD = 30 # Confidence threshold for filtering predictions
|
21 |
+
GRID_SIZE = (4, 4) # 4x4 segmentation
|
22 |
+
|
23 |
+
def process_image(image_path):
|
24 |
+
"""Processes an uploaded image and returns the final image with bounding boxes & symbol counts."""
|
25 |
+
original_image = Image.open(image_path)
|
26 |
+
width, height = original_image.size
|
27 |
+
seg_w, seg_h = width // GRID_SIZE[1], height // GRID_SIZE[0]
|
28 |
+
|
29 |
+
# Create a copy of the image for bounding boxes
|
30 |
+
final_image = original_image.copy()
|
31 |
+
draw_final = ImageDraw.Draw(final_image)
|
32 |
+
|
33 |
+
# Load font
|
34 |
+
try:
|
35 |
+
font = ImageFont.truetype("arial.ttf", 15)
|
36 |
+
except:
|
37 |
+
font = ImageFont.load_default()
|
38 |
+
|
39 |
+
# Dictionary for total counts
|
40 |
+
total_counts = defaultdict(int)
|
41 |
+
|
42 |
+
# Process each segment
|
43 |
+
for row in range(GRID_SIZE[0]):
|
44 |
+
for col in range(GRID_SIZE[1]):
|
45 |
+
x1, y1 = col * seg_w, row * seg_h
|
46 |
+
x2, y2 = (col + 1) * seg_w, (row + 1) * seg_h
|
47 |
+
|
48 |
+
segment = original_image.crop((x1, y1, x2, y2))
|
49 |
+
segment_path = f"segment_{row}_{col}.png"
|
50 |
+
segment.save(segment_path)
|
51 |
+
|
52 |
+
# Run inference
|
53 |
+
result = CLIENT.infer(segment_path, model_id=MODEL_ID)
|
54 |
+
filtered_predictions = [
|
55 |
+
pred for pred in result["predictions"] if pred["confidence"] * 100 >= CONFIDENCE_THRESHOLD
|
56 |
+
]
|
57 |
+
|
58 |
+
# Draw bounding boxes and update counts
|
59 |
+
for obj in filtered_predictions:
|
60 |
+
sx, sy, sw, sh = obj["x"], obj["y"], obj["width"], obj["height"]
|
61 |
+
class_name = obj["class"]
|
62 |
+
confidence = obj["confidence"]
|
63 |
+
total_counts[class_name] += 1
|
64 |
+
|
65 |
+
# Adjust coordinates for final image
|
66 |
+
x_min, y_min = x1 + (sx - sw // 2), y1 + (sy - sh // 2)
|
67 |
+
x_max, y_max = x1 + (sx + sw // 2), y1 + (sy + sh // 2)
|
68 |
+
|
69 |
+
# Draw bounding box
|
70 |
+
draw_final.rectangle([x_min, y_min, x_max, y_max], outline="green", width=2)
|
71 |
+
|
72 |
+
# Draw label
|
73 |
+
text = f"{class_name} {confidence:.2f}"
|
74 |
+
draw_final.text((x_min + 2, y_min - 10), text, fill="white", font=font)
|
75 |
+
|
76 |
+
# Save final image with bounding boxes
|
77 |
+
final_image_path = "static/final_detected_image.png"
|
78 |
+
final_image.save(final_image_path)
|
79 |
+
|
80 |
+
return final_image_path, total_counts
|
81 |
+
|
82 |
+
@app.route("/", methods=["GET", "POST"])
|
83 |
+
def index():
|
84 |
+
if request.method == "POST":
|
85 |
+
# Get uploaded image
|
86 |
+
image_file = request.files["image"]
|
87 |
+
if image_file:
|
88 |
+
image_path = "static/uploaded_image.png"
|
89 |
+
image_file.save(image_path)
|
90 |
+
|
91 |
+
# Process image
|
92 |
+
final_image_path, total_counts = process_image(image_path)
|
93 |
+
|
94 |
+
return render_template("index.html", final_image=final_image_path, counts=total_counts)
|
95 |
+
|
96 |
+
return render_template("index.html", final_image=None, counts=None)
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
app.run(host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
pillow
|
3 |
+
inference-sdk
|
static/style.css
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: Arial, sans-serif;
|
3 |
+
text-align: center;
|
4 |
+
background-color: #f8f8f8;
|
5 |
+
}
|
6 |
+
|
7 |
+
h1 {
|
8 |
+
color: #333;
|
9 |
+
}
|
10 |
+
|
11 |
+
form {
|
12 |
+
margin: 20px;
|
13 |
+
}
|
14 |
+
|
15 |
+
button {
|
16 |
+
background-color: #4CAF50;
|
17 |
+
color: white;
|
18 |
+
padding: 10px 20px;
|
19 |
+
border: none;
|
20 |
+
cursor: pointer;
|
21 |
+
}
|
22 |
+
|
23 |
+
button:hover {
|
24 |
+
background-color: #45a049;
|
25 |
+
}
|
26 |
+
|
27 |
+
img {
|
28 |
+
width: 50%;
|
29 |
+
margin-top: 20px;
|
30 |
+
border-radius: 5px;
|
31 |
+
}
|
templates/index.html
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>HVAC Symbol Detector</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
|
8 |
+
</head>
|
9 |
+
<body>
|
10 |
+
<h1>HVAC Symbol Detector</h1>
|
11 |
+
|
12 |
+
<form action="/" method="POST" enctype="multipart/form-data">
|
13 |
+
<input type="file" name="image" accept="image/*" required>
|
14 |
+
<button type="submit">Upload & Detect</button>
|
15 |
+
</form>
|
16 |
+
|
17 |
+
{% if final_image %}
|
18 |
+
<h2>Processed Image</h2>
|
19 |
+
<img src="{{ final_image }}" alt="Processed Image">
|
20 |
+
|
21 |
+
<h2>Detected Symbols</h2>
|
22 |
+
<ul>
|
23 |
+
{% for label, count in counts.items() %}
|
24 |
+
<li>{{ label }}: {{ count }}</li>
|
25 |
+
{% endfor %}
|
26 |
+
</ul>
|
27 |
+
{% endif %}
|
28 |
+
</body>
|
29 |
+
</html>
|