shreyasvaidya commited on
Commit
2e80db5
·
verified ·
1 Parent(s): 63da76a

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +9 -1
app.py CHANGED
@@ -11,6 +11,12 @@ from transformers import (
11
  )
12
  import numpy as np
13
  import torch
 
 
 
 
 
 
14
 
15
  from IndicTransToolkit import IndicProcessor
16
 
@@ -107,6 +113,7 @@ def process_image(image):
107
  # # Recognize text in the cropped area
108
  # recognized_text = ocr.recognise(cropped_path, script_lang)
109
  # recognized_texts.append(recognized_text)
 
110
  for id, bbox in enumerate(detections):
111
  # Identify the script and crop the image to this region
112
  script_lang, cropped_path = ocr.crop_and_identify_script(pil_image, bbox)
@@ -120,13 +127,14 @@ def process_image(image):
120
  if script_lang:
121
  recognized_text = ocr.recognise(cropped_path, script_lang)
122
  recognized_texts[f"img_{id}"] = {"txt": recognized_text, "bbox": [x1, y1, x2, y2]}
 
123
 
124
  # Combine recognized texts into a single string for display
125
  # recognized_texts_combined = " ".join(recognized_texts)
126
  string = detect_para(recognized_texts)
127
 
128
  recognized_texts_combined = '\n'.join([' '.join(line) for line in string])
129
- recognized_texts_combined = translate(recognized_texts_combined,script_lang)
130
 
131
  return output_image, recognized_texts_combined
132
 
 
11
  )
12
  import numpy as np
13
  import torch
14
+ from collections import Counter
15
+
16
+ def Most_Common(lst):
17
+ data = Counter(lst)
18
+ return data.most_common(1)[0][0]
19
+
20
 
21
  from IndicTransToolkit import IndicProcessor
22
 
 
113
  # # Recognize text in the cropped area
114
  # recognized_text = ocr.recognise(cropped_path, script_lang)
115
  # recognized_texts.append(recognized_text)
116
+ langs = []
117
  for id, bbox in enumerate(detections):
118
  # Identify the script and crop the image to this region
119
  script_lang, cropped_path = ocr.crop_and_identify_script(pil_image, bbox)
 
127
  if script_lang:
128
  recognized_text = ocr.recognise(cropped_path, script_lang)
129
  recognized_texts[f"img_{id}"] = {"txt": recognized_text, "bbox": [x1, y1, x2, y2]}
130
+ langs.append(script_lang)
131
 
132
  # Combine recognized texts into a single string for display
133
  # recognized_texts_combined = " ".join(recognized_texts)
134
  string = detect_para(recognized_texts)
135
 
136
  recognized_texts_combined = '\n'.join([' '.join(line) for line in string])
137
+ recognized_texts_combined = translate(recognized_texts_combined,Most_Common(langs))
138
 
139
  return output_image, recognized_texts_combined
140